TPAMI 2024 | 联邦高斯过程:收敛性、自动个性化与多保真度建模

Federated Gaussian Process: Convergence, Automatic Personalization and Multi-Fidelity Modeling

题目:联邦高斯过程:收敛性、自动个性化与多保真度建模

作者:X. Yue; R. Kontar
源码:https://github.com/UMDataScienceLab/Federated_Gaussian_Process


摘要

本文提出了一种名为FGPR的联邦高斯过程(GP)回归框架,该框架采用模型聚合的平均策略和随机梯度下降用于本地计算。值得注意的是,所得到的全局模型在个性化方面表现出色,FGPR联合学习了所有设备共享的先验。然后通过利用这个共享的先验并结合特定数据集的本地数据来获得预测后验,这些本地数据编码了特定数据集的个性化特征。从理论上讲,我们证明了FGPR收敛到完整对数边缘似然函数的临界点,受统计误差的限制。这一结果提供了独立的价值,因为它将联邦学习的理论结果扩展到了相关的范式。通过在几个回归任务上的广泛案例研究,我们展示了FGPR在广泛的应用中表现出色࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值