Federated Gaussian Process: Convergence, Automatic Personalization and Multi-Fidelity Modeling
题目:联邦高斯过程:收敛性、自动个性化与多保真度建模
作者:X. Yue; R. Kontar
源码:https://github.com/UMDataScienceLab/Federated_Gaussian_Process
摘要
本文提出了一种名为FGPR的联邦高斯过程(GP)回归框架,该框架采用模型聚合的平均策略和随机梯度下降用于本地计算。值得注意的是,所得到的全局模型在个性化方面表现出色,FGPR联合学习了所有设备共享的先验。然后通过利用这个共享的先验并结合特定数据集的本地数据来获得预测后验,这些本地数据编码了特定数据集的个性化特征。从理论上讲,我们证明了FGPR收敛到完整对数边缘似然函数的临界点,受统计误差的限制。这一结果提供了独立的价值,因为它将联邦学习的理论结果扩展到了相关的范式。通过在几个回归任务上的广泛案例研究,我们展示了FGPR在广泛的应用中表现出色