题目:Modeling Noisy Annotations for Point-Wise Supervision
点级监督下的噪声标注建模
作者:Jia Wan; Qiangqiang Wu; Antoni B. Chan
摘要
在计算机视觉任务中,如人群计数和人体姿态估计,广泛采用了逐点监督。在实践中,点注释中的噪声可能会显著影响算法的性能和鲁棒性。在本文中,我们研究了逐点监督中注释噪声的影响,并为不同任务提出了一系列鲁棒的损失函数。特别是,点注释噪声包括空间位移噪声、遗漏点噪声和重复点噪声。空间位移噪声是最常见的一种,存在于人群计数、姿态估计、视觉跟踪等场景中,而遗漏点和重复点噪声通常出现在密集注释中,如人群计数。在本文中,我们首先通过将真实位置建模为随机变量,将注释点视为真实位置的噪声观测,来考虑位移噪声。中间表示(由点注释生成的平滑热图)的概率密度函数被推导出来,并使用负对数似然作为损失函数,以自然地模拟中间表示中的位移不确定性。遗漏和重复噪声进一步通过经验方式建模,假设噪声以高概率出现在高密度区域。我们将该方法应用于人群计数、人体姿态估计和视觉跟踪,为这些任务提出了鲁棒