TPAMI 2024 | 鲁棒多模态学习与缺失模态通过参数高效适应

论文信息

题目:Robust Multimodal Learning with Missing Modalities via Parameter-Efficient Adaptation
鲁棒多模态学习与缺失模态通过参数高效适应
作者:Md Kaykobad Reza; Ashley Prater-Bennette; M. Salman Asif

论文创新点

  • 1 参数高效的适应过程:论文提出了一个简单且参数高效的适应过程,用于预训练的多模态网络以处理测试时缺失的模态。这种方法只需要极少的额外参数(例如,少于总参数的1%),与为每种模态组合训练独立网络相比,大大减少了参数数量。
  • 2 中间特征调制:通过调制中间特征来补偿缺失模态的影响,该方法利用简单的线性变换(如缩放和平移)来调整网络的内部特征表示,以适应缺失模态的情况,这在多模态学习领域是一种新颖的方法。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值