NIPS 2024 | 学习缓存:通过层缓存加速扩散Transformer

论文信息

题目:Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching
学习缓存:通过层缓存加速扩散Transformer
作者:Xinyin Ma, Gongfan Fang, Michael Bi Mi, Xinchao Wang
源码:https://github.com/horseee/learning-to-cache

论文创新点

  1. 动态缓存机制:作者提出了一种名为**Learning-to-Cache (L2C)**的新方案,通过动态方式学习在扩散Transformer中进行缓存。该方法利用Transformer层的一致结构和扩散的顺序特性,探索时间步之间的冗余计算,将每个层视为缓存的基本单元。
  2. 可微优化目标:为了解决在深度模型中识别要
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值