TMI 2024 | 多尺度特征对齐用于无标签域的持续学习

论文信息

题目:Multi-Scale Feature Alignment for Continual Learning of Unlabeled Domains
多尺度特征对齐用于无标签域的持续学习
作者:Kevin Thandiackal, Luigi Piccinelli, Rajarsi Gupta, Pushpak Pati, 和 Orcun Goksel
源码链接:https://github.com/histocartography/multi-scale-feature-alignment

论文创新点

  1. 提出了一种生成特征驱动的图像回放方法,结合双用途判别器,不仅能够生成具有真实特征的图像用于回放,还能在域适应过程中促进特征对齐。
  2. 多尺度特征聚合&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值