TIM 2025 | ADFormer:基于双分支CNN-Transformer架构的通用少样本异常检测

论文信息

题目:ADFormer: Generalizable Few-Shot Anomaly Detection With Dual CNN-Transformer Architecture
ADFormer:基于双分支CNN-Transformer架构的通用少样本异常检测
作者:Bingke Zhu, Zhaopeng Gu, Guibo Zhu, Yingying Chen, Ming Tang, and Jinqiao Wang

论文创新点

  1. 双分支CNN-Transformer架构:ADFormer提出了一种双分支CNN-Transformer架构,结合了CNN的局部特征提取能力和Transformer的全局特征建模能力。
  2. 自监督二分匹配方法:ADFormer引入了一种自监督二分匹配方法,通过从支持图像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值