论文信息
题目:ADFormer: Generalizable Few-Shot Anomaly Detection With Dual CNN-Transformer Architecture
ADFormer:基于双分支CNN-Transformer架构的通用少样本异常检测
作者:Bingke Zhu, Zhaopeng Gu, Guibo Zhu, Yingying Chen, Ming Tang, and Jinqiao Wang
论文创新点
- 双分支CNN-Transformer架构:ADFormer提出了一种双分支CNN-Transformer架构,结合了CNN的局部特征提取能力和Transformer的全局特征建模能力。
- 自监督二分匹配方法:ADFormer引入了一种自监督二分匹配方法,通过从支持图像