论文信息
题目:TAFormer: A Transmission-Aware Transformer for Underwater Image Enhancement
TAFormer:一种用于水下图像增强的传输感知 Transformer
作者:Yuanyuan Li, Zetian Mi, Yulin Wang, Shuaiyong Jiang, Xianping Fu
论文创新点
- 提出物理感知Swin Transformer:针对水下图像增强中单纯使用成像模型、卷积神经网络或Transformer的局限性,提出基于物理感知的Swin Transformer。该模型将图像退化机制和卷积神经网络融入Swin Transformer,整合了三种技术的优势,为水下图像增强提供了更有效的网络架构。
- 设计传输引导窗口多头自注意力机制:鉴于水下图像传输能表征图像退化程度,