TPAMI 2024 | 3D 点云的标签高效深度学习综述

论文信息

题目:A Survey of Label-Efficient Deep Learning for 3D Point Clouds
3D 点云的标签高效深度学习综述
作者:Aoran Xiao, Xiaoqin Zhang, Ling Shao, Shijian Lu
源码链接:https://github.com/xiaoaoran/3D_label_efficient_learning

论文创新点

  1. 首次全面综述 3D 点云标签高效学习,提出分类法组织相关方法。
  2. 系统回顾数据增强、域迁移学习等四类方法的进展与挑战。
  3. 探讨研究现状,从数据、模型架构等方面指出未来研究方向。

摘要

在过去十年中,深度神经网络在点云学习方面取得了显著进展。然而,收集大规模精确标注的点云数据极为费力且成本高昂,这限制了现有点云数据集的可扩展性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值