论文信息
题目:Deep Learning on Object-Centric 3D Neural Fields
基于以对象为中心的 3D 神经场的深度学习
作者:Pierluigi Zama Ramirez、Luca De Luigi、Daniele Sirocchi 等
源码链接:https://cvlab-unibo.github.io/nf2vec
论文创新点
- 提出 nf2vec 框架,将 NF 编码为紧凑嵌入用于下游任务。
- 验证该框架可处理多种神经场,实现 3D 分类、生成等任务。
- 构建 NF 分类评估基准,对比分析近期相关方法 。
摘要
近年来,神经场(NFs)已成为编码各种连续信号(如图像、视频、音频和3D形状)的有效工具。在处理3D数据时,NFs为解决与主流离散表示相关的碎片化和局限性问题提供了一种方案。然而&#