TPAMI 2024 | 自监督对抗训练的单目深度估计以抵御物理世界攻击

论文信息

题目:Self-Supervised Adversarial Training of Monocular Depth Estimation Against Physical-World Attacks
自监督对抗训练的单目深度估计以抵御物理世界攻击
作者:Zhiyuan Cheng, Cheng Han, James Liang, Qifan Wang, Xiangyu Zhang, and Dongfang Liu

论文创新点

  1. 自监督对抗训练方法:提出了一种新颖的自监督对抗训练方法,用于增强单目深度估计(MDE)模型对物理世界攻击的鲁棒性。该方法无需真实深度数据,通过视图合成技术实现对抗训练。

  2. 视图合成技术:开发了一种视图合成技术

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值