论文相关内容
本文中的推荐系统的模型:
协同过滤(CF)是许多推荐系统常用的一种成功方法。传统的基于cf的方法使用用户对项目的评分作为学习推荐的唯一信息来源。然而,在许多应用程序中,评级通常非常稀疏,导致基于cf的方法在推荐性能上显著下降。为了解决这个稀疏性问题,可以使用辅助信息,如项目内容信息。协同主题回归(CTR)是一种很有吸引力的新方法,它将从两个不同信息源学习的两个组件紧密地结合在一起。然而,当辅助信息非常稀疏时,CTR学习的潜在表示可能不是很有效。为了解决这一问题,我们总结了近年来从i.i.d.输入到非i.i.d.深度学习的研究进展。本文提出了一种基于cf的层次贝叶斯模型——协同深度学习(CDL),该模型对内容信息进行深度表示学习(堆叠去噪自动编码机),对评价矩阵(反馈)进行协同过滤。,它是第一个深度学习和推荐系统结合的层级贝叶斯模型,它属于紧耦合的混合系统。
堆叠去噪自动编码机
堆叠去噪自动编码机的模型表示及其优化目标。
协同深度学习
最终的优化目标。
总结
1、相关背景:当评分矩阵稀疏时,传统的协同过滤算法性能显著下降,故有人提出协同主题回归模型,紧耦合了来源于两种不同的信息源,但辅助信息稀疏时也不是非常有效。
2、问题是什么:如何在评分矩阵稀疏时增强推荐系统的性能。
3、现有的解决方案:作为本文对比算法松耦合的混合系统的协同主题回归模型CTR(对推荐系统不是很了解,还不知道其它解决算法。
4、作者的核心思想、创新点在哪里:本文提出了紧耦合的混合系统,它是一个层级的贝叶斯模型即协同深度学习,它联合了对于内容信息的深度表示学习和对于评分的协同过滤。
5、通过什么样的实验进行验证:3个数据集5个推荐系统算法2个评价度量进行的实验验证了CDL的性能。
6、对我的启发:见贤思齐焉,学会其他模型上长处。