DP 不同路径-DAY20

不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

img

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

深搜

这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

此时问题就可以转化为求二叉树叶子节点的个数:

62.不同路径
class Solution {
    public int uniquePaths(int m, int n) {
        return dfs(1,1,m,n);
    }
    public int dfs(int i,int j,int m,int n){
        if(i > m || j > n) return 0;//越界
        if(i == m && j == n) return 1;//找到终点(m,n)
        return  dfs(i+ 1,j,m,n) + dfs(i,j+1,m,n);//递归
    }
}

提交了代码就会发现超时了!

来分析一下时间复杂度,这个深搜的算法,其实就是要遍历整个二叉树。

树的深度其实就是m+n-1(深度按从1开始计算);

二叉树的节点个数就是 2^(m + n - 1) - 1;深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

动态规划

1.二维dp数组

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

​ 2.确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] dp[i][j - 1]

此时在回顾一下dp[i - 1][j]表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

​ 3.dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

4.确定遍历顺序

dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。保证推导dp[i][j]的时候,dp[i - 1][j] dp[i][j - 1]一定是有数值的

5.举例推导dp数组

如图所示:

62.不同路径1
class Solution {
    public int uniquePaths(int m, int n) {
        int[][] vector = new int[m][n];
        //初始化二维数组
        for(int i = 0; i < m; i++){//第一列
            vector[i][0] = 1;
        }
        for(int j = 0; j < n; j++){//第一行
            vector[0][j] = 1;
        }
        for(int i = 1; i < m; i++){//遍历
            for(int j = 1;j < n;j++){
                vector[i][j] = vector[i - 1][j] + vector[i][j-1];//递推公式
            }
        }
        return vector[m-1][n-1];
    }
}
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(m × n)
2.滚动数组

用一个一维数组(可以理解是滚动数组)来进行优化空间复杂度。

class Solution {
    public int uniquePaths(int m, int n) {
        int[] dp = new int[n];//根据列数 新建一维数组
        //初始化第一行
        for(int i = 0; i < n; i++){
            dp[i] = 1;
        }
        //遍历
        for(int i = 1;i < m; i ++){//行遍历,实现滚动效果
            for(int j = 1;j < n; j++){// 列遍历进行更新一维数组
                dp[j] = dp[j-1] + dp[j];//下一行时:  dp[j] 代表上方,dp[j-1]代表左方
            }
        }
        return dp[n-1];
    }
}

数论方法

62.不同路径

从起点(左上角)到终点(右下角),行方向需要m-1步,列方向需要n-1步,总共需要m+n-1步。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

排列是与次序相关的,而组合是与次序无关的。如:有10个参赛选手(A、B、C、D、E、F、G、H、I、J),选取3名发奖牌(奖牌相同),分析总共有多少种情况。因为排列有先后,所以A、B、C和A、C、B是不同的排列情况,但是这两种在组合中被认为是相同。也就是说将排列中因为排序不同,但是实际选手组合相同的情况去除,即是组合的情况。因为排序导致的不同是C(3,3)。那么C(n,r)=P(n,r)/P(r,r)=P(n,r)/r!。

在这里插入图片描述

img $$ C^b_a==\frac{a(a-1)(a-2)···(a-b+1)}{b!}=\frac{a!}{b!*(a-b)!} 等同于 C^{m-1}_{m+n-2}=\frac{(m+n-2)(m+n-3)···(n))}{(m-1)!} $$
class Solution {
public:
    int uniquePaths(int m, int n) {
        int numerator = 1, denominator = 1;
        int count = m - 1;//分子项数
        int t = m + n - 2;
        while (count--) numerator *= (t--); // 计算分子,此时分子就会溢出
        for (int i = 1; i <= m - 1; i++) denominator *= i; // 计算分母
        return numerator / denominator;
    }
};
//求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

总结

维护的是一个二维DP数组。可以用滚动数组进行降维。回顾深度遍历,二叉树的深度与节点个数间的关系:满二叉树节点数2^h - 1;

  • 7
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值