统计学习方法之k近邻法

统计学习方法之k近邻法

1. k近邻算法

I n p u t : Input: Input:

  • T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } 其 中 , x i ∈ X ⊆ R n 为 实 例 的 特 征 向 量 T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} 其中, x_{i} \in \mathcal{X} \subseteq \mathbf{R}^{n} 为实例的特征向量 T={(x1,y1),(x2,y2),,(xN,yN)}xiXRn
  • y i ∈ Y = { c 1 , c 2 , ⋯   , c K } 为 实 例 的 别 , i = 1 , 2 , ⋯   , N y_{i} \in \mathcal{Y}=\left\{c_{1}, c_{2}, \cdots, c_{K}\right\} 为实例的别, i=1,2, \cdots, N yiY={c1,c2,,cK}i=1,2,,N
  • 实 例 特 征 向 量 x 实例特征向量 x x

O u t p u t : Output: Output:

  • 实 例 x 所 属 的 类 y 实例x所属的类y xy

A l g o r i t h m : Algorithm: Algorithm:

  • 根据给定的距离度量,在训练集 T T T中找出与 x x x最近邻的 k k k个点,涵盖这 k k k个点的 x x x的邻域记作 N k ( x ) N_k(x) Nk(x)
  • N k ( x ) N_k(x) Nk(x)中根据分类决策规则决定 x x x的类别 y y y

y = arg ⁡ max ⁡ c j ∑ x i ∈ N k ( x ) I ( y i = c j ) , i = 1 , 2 , ⋯   , N ; j = 1 , 2 , ⋯   , K y=\arg \max _{c_{j}} \sum_{x_{i} \in N_{k}(x)} I\left(y_{i}=c_{j}\right), \quad i=1,2, \cdots, N ; j=1,2, \cdots, K y=argcjmaxxiNk(x)I(yi=cj),i=1,2,,N;j=1,2,,K

2. k近邻模型

2.1 距离度量

特征空间中两个实例点的距离是两个实例点相似程度的反映。

  • 闵可夫斯基距离距离:

L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}} Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1

  • 欧式距离:

L p 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_{p2}\left(x_{i}, x_{j}\right)=\left(\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right|^{2}\right)^{\frac{1}{2}} Lp2(xi,xj)=(l=1nxi(l)xj(l)2)21

  • 曼哈顿距离:

L 1 ( x i , x j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_{1}\left(x_{i}, x_{j}\right)=\sum_{l=1}^{n}\left|x_{i}^{(l)}-x_{j}^{(l)}\right| L1(xi,xj)=l=1nxi(l)xj(l)

  • 切比雪夫距离:

L ∞ ( x i , x j ) = max ⁡ l ∣ x i ( l ) − x j ( l ) ∣ L_{\infty}\left(x_{i}, x_{j}\right)=\max _{l}\left|x_{i}^{(l)}-x_{j}^{(l)}\right| L(xi,xj)=lmaxxi(l)xj(l)

2.2 k值的选择

k值的选择会对k近邻法的结果产生重大影响

  1. k值的减小就意味着整体模型变得复杂,容易发生过拟合。
  2. k值的增大就意味着整体的模型变得简单,容易使预测发生错误。
  3. 在应用中,一般取一个比较小的数值。通常采用交叉验证法来选取最优的k值
2.3 分类决策规则

k近邻法中的分类决策规则一般为多数表决。

分类函数为:
f : R n → { c 1 , c 2 , . . . , c k } f:R^n \rightarrow\{c_1,c_2,...,c_k\} f:Rn{c1,c2,...,ck}

误分类概率:
P ( Y ≠ f ( X ) ) = 1 − P ( Y = f ( X ) ) P(Y \not= f(X)) = 1 - P(Y=f(X)) P(Y=f(X))=1P(Y=f(X))

实例 x ∈ X x \in \mathcal{X} xX;最近邻的k个训练实例点构成集合 N k ( x ) N_k(x) Nk(x)。如果涵盖 N k ( x ) N_k(x) Nk(x)区域的类别为 c j c_j cj,那么误分类率为:
1 k ∑ x i ∈ N k ( x ) I ( y i ≠ c j ) = 1 − 1 k ∑ x i ∈ N k ( x ) I ( y i = c j ) \frac{1}{k} \sum_{x_{i} \in N_{k}(x)} I\left(y_{i} \neq c_{j}\right)=1-\frac{1}{k} \sum_{x_{i} \in N_{k}(x)} I\left(y_{i}=c_{j}\right) k1xiNk(x)I(yi=cj)=1k1xiNk(x)I(yi=cj)

要使误分类率最小即经验风险最小,就要使 1 k ∑ x i ∈ N k ( x ) I ( y i = c j ) \frac{1}{k} \sum_{x_{i} \in N_{k}(x)} I\left(y_{i}=c_{j}\right) k1xiNk(x)I(yi=cj)最大,也就是多数表决。

3. 算法实现

# 导入所需的库
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 加载数据
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target

df
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)label
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20
..................
1456.73.05.22.32
1466.32.55.01.92
1476.53.05.22.02
1486.23.45.42.32
1495.93.05.11.82

150 rows × 5 columns

# 展示数据
x_idx = iris.feature_names[0]
y_idx = iris.feature_names[1]
plt.scatter(df[:50][x_idx], df[:50][y_idx], label='0')
plt.scatter(df[50:100][x_idx], df[50:100][y_idx], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
plt.show()

在这里插入图片描述

# 准备数据
data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
test_point = [[6, 3]]
plt.scatter(df[:50][x_idx], df[:50][y_idx], label='0')
plt.scatter(df[50:100][x_idx], df[50:100][y_idx], label='1')
plt.plot(test_point[0][0], test_point[0][1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
plt.show()

在这里插入图片描述

from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier()
clf.fit(X_train, y_train)

clf.predict(test_point)

array([1.])
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值