异常检测(四)--- 基于相似度的方法

四、基于相似度的方法

1、概述

“异常”通常是一个主观的判断,什么样的数据被认为是“异常”的,需要结合业务背景和环境来具体分析确定。

实际上,数据通常嵌入在大量的噪声中,而我们所说的“异常值”通常指具有特定业务意义的那一类特殊的异常值。噪声可以视作特性较弱的异常值,没有被分析的价值。噪声和异常之间、正常数据和噪声之间的边界都是模糊的。异常值通常具有更高的离群程度分数值,同时也更具有可解释性。

在普通的数据处理中,我们常常需要保留正常数据,而对噪声和异常值的特性则基本忽略。但在异常检测中,我们弱化了“噪声”和“正常数据”之间的区别,专注于那些具有有价值特性的异常值。在基于相似度的方法中,主要思想是异常点的表示与正常点不同。

2、基于距离的度量

基于距离的方法是一种常见的适用于各种数据域的异常检测算法,它基于最近邻距离来定义异常值。此类方法不仅适用于多维数值数据,在其他许多领域,例如分类数据,文本数据,时间序列数据和序列数据等方面也有广泛的应用。

基于距离的异常检测有这样一个前提假设,即异常点的近邻距离要远大于正常点。解决问题的最简单方法是使用嵌套循环。 第一层循环遍历每个数据,第二层循环进行异常判断,需要计算当前点与其他点的距离,一旦已识别出多于 个数据点与当前点的距离在 之内,则将该点自动标记为非异常值。

这样计算的时间复杂度为O(N^2),当数据量比较大时,这样计算是及不划算的。 因此,需要修剪方法以加快距离计算。

2.1 基于单元的方法

在基于单元格的技术中,数据空间被划分为单元格,单元格的宽度是阈值D和数据维数的函数。具体地说,每个维度被划分成宽度最多为 (D/(2sqrt(d)))单元格。在给定的单元以及相邻的单元中存在的数据点满足某些特性,这些特性可以让数据被更有效的处理。
在这里插入图片描述
以二维情况为例,此时网格间的距离为(D/(2
sqrt(d))),需要记住的一点是,网格单元的数量基于数据空间的分区,并且与数据点的数量无关。这是决定该方法在低维数据上的效率的重要因素,在这种情况下,网格单元的数量可能不多。 另一方面,此方法不适用于更高维度的数据。对于给定的单元格,其L1邻居被定义为通过最多1个单元间的边界可从该单元到达的单元格的集合。请注意,在一个角上接触的两个单元格也是L1邻居。L2邻居是通过跨越2个或3个边界而获得的那些单元格。 上图中显示了标记为X 的特定单元格及其L1和L2邻居集。 显然,内部单元具有8个L1邻居和40个L2邻居。 然后,可以立即观察到以下性质:

  • 单元格中两点之间的距离最多为D/2 。
  • 一个点与L1邻接点之间的距离最大为D。
  • 一个点与它的 Lr邻居(其中r > 2)中的一个点之间的距离至少为F。

唯一无法直接得出结论的是L2中的单元格。 这表示特定单元中数据点的不确定性区域。对于这些情况,需要明确执行距离计算。同时,可以定义许多规则,以便立即将部分数据点确定为异常值或非异常值。 规则如下:

  • 如果一个单元格中包含超过k 个数据点及其L1 邻居,那么这些数据点都不是异常值。
  • 如果单元A 及其相邻L1 和L2中包含少于k个数据点,则单元A中的所有点都是异常值。

此过程的第一步是将部分数据点直接标记为非异常值(如果由于第一个规则而导致它们的单元格包含k个点以上)。 此外,此类单元格的所有相邻单元格仅包含非异常值。 为了充分利用第一条规则的修剪能力,确定每个单元格及其L1邻居中点的总和。 如果总数大于k,则所有这些点也都标记为非离群值。

在这里插入图片描述

2.2 基于索引的方法

对于一个给定数据集,基于索引的方法利用多维索引结构(如R树\k-d树)来搜索每个数据对象A在半径D范围 内的相邻点。设 M是一个异常值在其 D-邻域内允许含有对象的最多个数,若发现某个数据对象A的 D-邻域内出现M+1 甚至更多个相邻点, 则判定对象A不是异常值。该算法时间复杂度在最坏情况下为O(kN^2) 其中 k是数据集维数,N是数据集包含对象的个数。该算法在数据集的维数增加时具有较好的扩展性,但是时间复杂度的估算仅考虑了搜索时间,而构造索引的任务本身就
需要密集复杂的计算量。

3、基于密度的度量

基于密度的算法主要有局部离群因子(LocalOutlierFactor,LOF),以及LOCI、CLOF等基于LOF的改进算法。下面我们以LOF为例来进行详细的介绍和实践。

基于距离的检测适用于各个集群的密度较为均匀的情况。在下图中,离群点B容易被检出,而若要检测出较为接近集群的离群点A,则可能会将一些集群边缘的点当作离群点丢弃。而LOF等基于密度的算法则可以较好地适应密度不同的集群情况。
在这里插入图片描述
那么,这个基于密度的度量值是怎么得来的呢?还是要从距离的计算开始。类似k近邻的思路,首先我们也需要来定义一个“k-距离”。

3.1 k-距离(k-distance§):

对于数据集D中的某一个对象o,与其距离最近的k个相邻点的最远距离表示为k-distance§,定义为给定点p和数据集D中对象o之间的距离d(p,o),满足:
在这里插入图片描述
直观一些理解,就是以对象o为中心,对数据集D中的所有点到o的距离进行排序,距离对象o第k近的点p与o之间的距离就是k-距离。

在这里插入图片描述

3.2 k-邻域(k-distance neighborhood):

由k-距离,我们扩展到一个点的集合——到对象o的距离小于等于k-距离的所有点的集合,我们称之为k-邻域:
在这里插入图片描述

在二维平面上展示出来的话,对象o的k-邻域实际上就是以对象o为圆心、k-距离为半径围成的圆形区域。就是说,k-邻域已经从“距离”这个概念延伸到“空间”了。

3.3 可达距离(reachability distance):

在这里插入图片描述

3.4 局部可达密度(local reachability density):

我们可以将“密度”直观地理解为点的聚集程度,就是说,点与点之间距离越短,则密度越大。在这里,我们使用数据集D中给定点p与对象o的k-邻域内所有点的可达距离平均值的倒数(注意,不是导数)来定义局部可达密度。

给定点p的局部可达密度计算公式为:
在这里插入图片描述
由公式可以看出,这里是对给定点p进行度量,计算其邻域内的所有对象o到给定点p的可达距离平均值。给定点p的局部可达密度越高,越可能与其邻域内的点 属于同一簇;密度越低,越可能是离群点。

3.5 局部异常因子:

在这里插入图片描述
在这里插入图片描述

最终得出的LOF数值,就是我们所需要的离群点分数。在sklearn中有LocalOutlierFactor库,可以直接调用。下面来直观感受一下LOF的图像呈现效果。

LocalOutlierFactor库可以用于对单个数据集进行无监督的离群检测,也可以基于已有的正常数据集对新数据集进行新颖性检测。在这里我们进行单个数据集的无监督离群检测。


                
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于密度的时序数据异常检测方法是一种常用的异常检测方法,其优缺点如下: 优点: 1. 适用性广:基于密度的方法适用于各种类型的数据,包括连续和离散的数据,可以用于时间序列、图像、文本等各种数据类型。 2. 精度高:基于密度的方法能够准确地检测出数据中的异常点,能够发现各种类型的异常。 3. 无需标签数据:基于密度的方法通常不需要标签数据,即可以进行无监督学习,从而节省了人力成本。 4. 可解释性强:基于密度的方法可以通过计算数据点的密度来判断其是否为异常点,因此可以直观地解释检测结果。 缺点: 1. 计算复杂度高:基于密度的方法需要计算每个数据点与其他数据点之间的距离或相似度,因此对于大规模数据集,计算复杂度较高。 2. 敏感性差:基于密度的方法对于噪声点和局部异常点比较敏感,对于全局异常点的检测效果较差。 3. 数据分布要求高:基于密度的方法对数据的分布有一定的要求,如果数据分布较为稀疏或不均匀,可能会出现误判。 4. 参数选择困难:基于密度的方法需要选择合适的密度估计方法和参数,这对于非专业人员来说可能比较困难。 综上所述,基于密度的时序数据异常检测方法在实际应用中需要根据具体情况进行选择和调整,以充分发挥其优势,提高检测精度和鲁棒性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值