文章目录
弹载AI芯片产品定位和技术路线
一、应用场景
导弹导航:
- 到2026年,强化学习算法将在导弹导航中发挥关键作用。例如基于深度Q网络(DQN)及其变体算法,导弹能够在飞行过程中与复杂的战场环境进行实时交互。通过不断尝试不同的飞行策略,并根据环境反馈的奖励信号,学习到最优的导航路径。这一过程结合高精度地图和多传感器融合技术,如全球卫星导航系统(GNSS)、惯性测量单元(IMU)以及雷达高度计等。利用TensorFlow或PyTorch等深度学习框架构建的模型,可以快速处理多源数据,在面对敌方干扰时,动态调整导航策略,确保导弹精准抵达目标。
- 例如,当导弹穿越电磁干扰区域,基于DQN的算法能够迅速判断干扰类型,并从多种预定义的应对策略中选择最优方案,如切换到备用导航信号源或采用特定的滤波算法对干扰信号进行处理,保障导航的连续性和准确性。
目标识别:
- 卷积神经网络(CNN)及其优化算法,如ResNet、YOLO系列等,在目标识别方面将持续占据主导地位。在弹载系统中,这些算法通过对大量目标图像的学习,能够在复杂背景下快速准确地识别各类目标。借助TensorFlow Serving或ONNX Runtime等推理框架,芯片可以高效地运行训练好的CNN模型。
- 例如,导弹在接近目标区域时,光学传感器捕获的图像数据被实时传输到弹载AI芯片。芯片中的CNN模型对图像进行特征提取和分类,能够快速区分军事目标与民用目标、真实目标与伪装目标。如在面对伪装成民用建筑的军事设施时,基于ResNet的模型能够通过识别细微的特征差异,准确判断其真实属性。
态势感知:
- 循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),对于处理随时间序列变化的战场态势数据具有独特优势。这些算法可以结合来自雷达、电子战系统等多源情报数据,通过对历史数据的学习和分析,预测战场态势的发展趋势。在框架选择上,PyTorch由于其动态计算图特性,在处理这类需要灵活调整网络结构的任务时表现出色。
- 例如,通过对敌方雷达信号强度、频率等时间序列数据的分析,LSTM模型可以预测敌方防空系统的部署变化和可能的拦截行动,为导弹的飞行决策提供依据。导弹能够根据这些预测结果,提前规划规避路线或调整攻击策略。
二、应用痛点
功耗限制:
- 当前的AI算法,如复杂的CNN模型,虽然在目标识别精度上表现卓越,但运算过程中需要大量的乘法和加法运算,导致功耗较高。在弹载系统有限的能源供应下,这成为了一个严重的瓶颈。例如,一些高精度的目标识别模型,在运行时可能需要消耗数瓦甚至数十瓦的功率,这对于依靠电池或小型发电机供电的导弹来说是难以承受的。
- 为了解决这一问题,需要研发低功耗的算法优化技术,如模型量化、剪枝等。模型量化通过减少数据表示的精度,在不显著降低模型性能的前提下,降低计算量和存储需求,从而减少功耗。剪枝技术则是去除神经网络中对结果影响较小的连接或神经元,进一步降低计算复杂度。
计算能力要求:
- 随着战场环境的日益复杂,对弹载AI芯片的计算能力要求呈指数级增长。例如,在同时处理多个目标的识别和跟踪、复杂地形的导航以及动态战场态势的分析时,需要芯片具备强大的并行计算能力。以处理高分辨率的光学图像和雷达数据为例,传统的单核处理器远远无法满足实时处理的需求。
- 虽然目前的GPU在并行计算方面表现出色,但在弹载系统中,其体积、功耗和散热问题限制了应用。因此,需要开发针对弹载环境的专用计算架构,如采用FPGA(现场可编程门阵列)或ASIC(专用集成电路),结合高效的算法优化,以满足计算需求。
环境适应性:
- 导弹在飞行过程中会经历剧烈的温度变化、高过载以及强电磁干扰等恶劣环境。这些环境因素可能导致芯片的电子元件性能下降甚至损坏,影响AI算法的正常运行。例如,高温可能使芯片的晶体管阈值电压发生漂移,导致计算错误;强电磁干扰可能破坏芯片内部的信号传输,使数据丢失或错误。
- 为提高环境适应性,需要在芯片设计和制造过程中采用特殊的防护技术,如采用抗辐射加固工艺、高温稳定的材料以及电磁屏蔽技术等。同时,在算法层面,也需要开发具有一定容错能力的算法,能够在数据出现少量错误时仍保持一定的性能。
数据安全与实时性:
- 在弹载系统中,数据安全至关重要。一方面,传输过程中的数据容易被敌方截获和篡改,影响导弹的作战效能。另一方面,AI算法的模型参数也需要保密,防止被敌方破解和利用。例如,在目标识别模型中,模型的权重参数包含了对目标特征的学习结果,如果被敌方获取,可能会利用这些信息进行伪装或欺骗。
- 为保障数据安全,需要采用加密传输技术,如量子加密技术,确保数据在传输过程中的保密性和完整性。在算法层面,也需要开发安全的模型更新机制,防止未经授权的模型篡改。同时,要在保证数据安全的前提下,确保算法的实时性,满足导弹快速决策的需求。
三、市场需求预测
市场规模:
- 随着各国对军事现代化的持续投入,特别是对精确打击和智能化作战能力的重视,预计到2026年弹载AI市场规模将显著增长。据市场研究机构预测,全球弹载AI市场规模可能从当前的数亿美元增长至数十亿美元。这一增长主要得益于新型导弹系统的研发和现有导弹系统的升级改造需求。
- 例如,美国、俄罗斯等军事强国正在大力发展下一代智能导弹,这些导弹将广泛应用AI技术,包括先进的目标识别、自主导航和态势感知等功能,这将带动对弹载AI芯片的大量需求。
增长潜力:
- 未来战争形态的演变将持续推动弹载AI市场的增长。随着无人机蜂群作战、多域联合作战等新型作战概念的兴起,对弹载系统的智能化水平提出了更高的要求。例如,在无人机蜂群作战中,导弹需要具备与其他无人机协同作战的能力,这就需要更强大的AI算法和更高效的芯片支持。
- 此外,随着AI技术在民用领域的快速发展,如自动驾驶、智能安防等,相关的技术成果可以快速转化应用到弹载系统中,进一步推动弹载AI市场的发展。
对边缘AI芯片的具体需求:
- 弹载系统对边缘AI芯片的需求将集中在高算力、低功耗、小体积和高可靠性等方面。芯片需要具备强大的并行计算能力,能够快速处理多种传感器的数据,如光学、雷达、红外等。同时,要在有限的功耗和体积限制下,实现高效的AI算法运行。
- 例如,在目标识别任务中,芯片需要能够在短时间内对大量的图像数据进行处理和分析,准确识别目标。在导航任务中,要能够实时融合多源导航数据,快速计算出最优的飞行路径。此外,芯片还需要具备高度的可靠性,确保在各种恶劣环境下稳定运行。
四、竞争分析
现有产品优势:
- 部分现有的弹载AI芯片已经在市场上取得了一定的份额,具有成熟的生产工艺和配套的技术支持体系。例如,一些知名半导体厂商生产的芯片,在计算能力和稳定性方面有一定保障。这些芯片经过多年的市场验证,在军方用户中具有较高的信任度。
- 同时,部分产品在算法优化方面也有一定的积累,能够在一定程度上满足当前弹载系统的需求。例如,针对特定的目标识别任务,开发了专门的优化算法,提高了识别效率。
现有产品不足:
- 大多数现有产品在功耗控制方面仍有待提高。随着导弹对航程和续航能力的要求不断增加,低功耗芯片的需求日益迫切。目前很多芯片在运行复杂AI算法时,功耗过高,限制了导弹的性能。
- 在环境适应性方面,虽然部分芯片采用了一些防护措施,但在极端恶劣环境下,如高温、高过载和强电磁干扰同时存在的情况下,仍难以保证稳定运行。此外,现有产品在算法的灵活性和可扩展性方面也存在不足,难以快速适应新的作战任务和算法更新需求。
差异化竞争点:
- 我们的芯片可以在功耗优化方面取得突破。通过采用先进的制程工艺,如5纳米或更先进的工艺,结合创新的电路设计,降低芯片的功耗。同时,研发高效的低功耗算法,如基于稀疏神经网络的算法,在保证性能的前提下,减少计算量和功耗。
- 在环境适应性方面,采用独特的封装技术和材料,提高芯片的抗恶劣环境能力。例如,使用耐高温、抗辐射的材料,增强芯片在极端环境下的稳定性。此外,注重芯片的软件可编程性和开放性,方便用户根据不同的作战任务快速更新AI算法,提高产品的灵活性和适应性。
五、技术路线分析
GPGPU(通用图形处理单元)
-
优点:
- 强大的并行计算能力:拥有大量的计算核心,能够高效处理大规模并行计算任务,在复杂的深度学习算法执行上优势明显,如对高分辨率图像进行目标识别时,可快速完成卷积运算等操作 。
- 丰富的软件生态:有成熟的CUDA或OpenCL等编程工具链,并且在通用计算领域,尤其是深度学习训练方面,积累了大量的开源代码和库,开发者可利用这些资源快速开发应用 。
-
缺点:
- 高功耗:运行时需要消耗大量电能,这对于能源受限的弹载系统是极大挑战,会严重影响导弹的续航能力。
- 体积大:芯片及配套散热设备体积较大,难以满足弹载系统对空间紧凑的要求,增加导弹整体设计难度 。
- 封闭性(CUDA):CUDA是NVIDIA专有的,这限制了与其他硬件的兼容性,一旦选择基于CUDA的GPGPU,后续在硬件选型和升级上可能会被NVIDIA的技术路线绑定。
-
技术要求:
- 工具链:需要成熟的CUDA或OpenCL等编程工具链。CUDA是NVIDIA专有的,对NVIDIA GPU的支持非常好,能充分发挥其并行计算能力,但具有一定的封闭性。OpenCL则是跨平台的,但在不同硬件平台上的性能优化难度较大。
- 用户接收度:在通用计算领域,尤其是深度学习训练方面,GPGPU已经被广泛接受。然而在弹载系统中,由于其功耗高、体积大,用户接收度可能受限。不过,如果能够在功耗和体积上取得突破,军方对其强大计算能力的需求可能会使其成为一个有吸引力的选择。
- 适合场景:对于需要大量并行计算,且对功耗和体积限制相对较宽松的弹载任务,如大型导弹的复杂态势感知计算,在允许较大功耗预算的情况下,GPGPU可发挥其强大的浮点运算能力。
CGRA(可配置计算架构)
-
优点:
- 高度灵活性:可根据不同的AI算法和任务需求,快速重构计算架构,适应多种弹载应用场景,如在不同类型目标识别任务间切换时能迅速调整计算资源分配 。
- 低功耗潜力:相较于GPGPU,由于其针对性的配置,在执行特定任务时可有效降低功耗,适合对功耗敏感的弹载系统 。
-
缺点:
- 工具链不成熟:专门为CGRA开发的编译器和编程环境相对较新,成熟度不如GPGPU的工具链,开发者需要花费更多精力学习和调试 。
- 开发难度高:开发者需要深入了解CGRA的架构细节,以实现高效的代码映射,这对开发团队的技术水平要求较高 。
-
技术要求:
- 工具链:需要专门为CGRA开发的编译器和编程环境,这类工具链相对较新,成熟度不如GPGPU的工具链。开发者需要深入了解CGRA的架构细节,以实现高效的代码映射。
- 用户接收度:由于其灵活性和可重构性,对于需要快速适应不同算法和任务的弹载系统有一定吸引力。但由于其技术的新颖性,用户可能需要一定时间来学习和适应新的开发流程。
- 适合场景:当弹载任务需要频繁调整计算架构以适应不同的AI算法或作战场景变化时,CGRA的可重构特性使其非常适合。例如在执行多种目标识别任务(如不同类型导弹针对不同目标的识别)且需要快速切换算法时。
NVDLA(NVIDIA深度学习加速器)
-
优点:
- 高效的深度学习推理:针对NVIDIA的硬件架构进行了深度优化,利用TensorRT等工具,能显著提高深度学习推理效率,在目标识别、导航等基于深度学习的弹载AI功能实现上有出色表现 。
- 兼容性好(在NVIDIA生态内):对于已经在NVIDIA生态系统中投入大量资源的用户,NVDLA能很好地与现有NVIDIA GPU等硬件和软件工具兼容,便于系统升级和扩展 。
-
缺点:
- 封闭性:依赖NVIDIA的技术,对于其他厂商或希望保持技术独立性的用户,可能会面临技术锁定风险,且在与非NVIDIA硬件集成时存在困难 。
- 成本因素:使用NVIDIA的技术和产品通常需要一定的授权费用等成本,这在大规模应用于弹载系统时会是一个考虑因素 。
-
技术要求:
- 工具链:依赖NVIDIA提供的深度学习推理优化工具,如TensorRT等。这些工具针对NVIDIA的硬件架构进行了深度优化,能显著提高推理效率,但同样存在一定的封闭性。
- 用户接收度:对于已经在NVIDIA生态系统中投入大量资源的用户,NVDLA的兼容性和性能优势会使其具有较高的接收度。然而,对于其他厂商或希望保持技术独立性的用户,可能会对其封闭性有所顾虑。
-
适合场景:在以深度学习推理为主的弹载应用中,尤其是基于NVIDIA GPU的系统升级或新设计中,NVDLA能利用NVIDIA的技术优势,快速实现高效的目标识别、导航等AI功能。
FPGA(现场可编程门阵列)
-
优点:
- 灵活性与可定制性:可根据弹载系统的特定需求进行硬件级别的定制,针对不同的传感器数据处理和AI算法实现高效适配,例如在导弹实时目标跟踪中,可定制逻辑实现对特定目标特征的快速提取 。
- 低功耗:相较于GPGPU,FPGA在完成特定任务时功耗较低,适合弹载系统对能源的严格限制 。
- 高可靠性与实时性:在军事领域有一定应用基础,其可靠性和可重构性得到认可,能在复杂电磁环境等恶劣条件下稳定工作,满足弹载任务对实时处理的要求 。
-
缺点:
- 开发难度大:需要掌握硬件描述语言(如Verilog或VHDL),开发过程相对复杂,对开发人员的硬件设计知识要求高 。
- 计算资源有限:虽然可定制,但相对GPGPU等,其计算资源在处理大规模复杂计算任务时相对有限 。
-
技术要求:
- 工具链:有多种FPGA开发工具,如Xilinx的Vivado和Intel的Quartus Prime等。这些工具提供了硬件描述语言(如Verilog或VHDL)的开发环境,以及针对特定FPGA架构的优化工具。但FPGA开发相对复杂,需要硬件设计知识。
- 用户接收度:FPGA在军事领域有一定的应用基础,因其具有灵活性和可定制性。军方用户对其可靠性和可重构性较为认可,在一些对实时性和定制化要求高的弹载系统中,用户接收度较高。
-
适合场景:适用于对功耗敏感、需要快速定制和实时性强的弹载任务。例如在导弹的实时目标跟踪中,FPGA可以根据不同的传感器数据和跟踪算法进行定制化设计,且能在低功耗下实现快速处理。
异构结构(如CPU + GPU或其他组合)
- 技术要求:
- 工具链:需要支持异构计算的编程模型和工具,如OpenACC、CUDA - MPI等。这些工具需要协调不同类型处理器之间的任务分配和数据传输,开发难度较大。例如,使用OpenACC时,开发者需要明确指定哪些计算任务在CPU上执行,哪些在GPU上执行,并处理好数据在两者之间的传输,这对开发者的编程能力和对硬件架构的理解要求较高。
- 用户接收度:如果能够有效解决异构计算中的编程和性能优化问题,这种结构可以充分发挥不同处理器的优势,用户接收度会较高。但由于开发难度,可能需要一定的技术培训和支持。军方用户在看到异构结构带来的显著性能提升后,会更愿意投入资源进行技术培训和开发支持,以利用其优势提升弹载系统的整体效能。
- 适合场景:对于既有通用计算需求(如导弹系统的控制逻辑),又有大量并行计算需求(如AI算法执行)的弹载系统,异构结构是一个很好的选择。例如在执行复杂的态势感知任务时,CPU负责系统管理和数据预处理,GPU负责AI算法的并行计算。在处理多源情报数据时,CPU可以先对数据进行初步筛选和分类,然后将适合并行计算的部分交给GPU进行快速分析,从而实现高效的态势感知。
推荐技术路线:FPGA或异构结构(如CPU + 定制化低功耗AI加速器)
原因:
-
FPGA:弹载系统对功耗和实时性要求极高,FPGA的低功耗特性能够满足能源受限的弹载环境。其灵活性和可定制性可根据不同导弹型号的任务需求,快速定制硬件逻辑以适配特定的AI算法和传感器数据处理,在复杂电磁环境下能保证可靠运行,满足军事应用对可靠性的要求。虽然开发难度大,但对于军事项目而言,可通过专业团队和长期投入来攻克。
-
异构结构(CPU + 定制化低功耗AI加速器):这种结构可以结合CPU在通用计算和系统控制方面的优势,以及定制化低功耗AI加速器针对AI算法的高效并行处理能力。能满足弹载系统中既需要处理复杂控制逻辑,又要执行大量AI计算的需求。通过合理的任务分配和功耗管理,可在性能和功耗之间达到较好的平衡,同时具备一定的扩展性,便于后续系统升级。
NPU
- 优点:专为 AI 任务设计,在处理神经网络相关运算时,相比传统 CPU 和 GPU,性能更高、功耗更低。其并行计算能力强,能快速处理大量数据,加速 AI 模型的训练和推理。同时,NPU 可针对特定的 AI 应用进行优化,提高系统的整体效率和响应速度146.
- 缺点:通用性较差,只能处理特定类型的 AI 任务,对于非 AI 相关的计算任务支持有限。开发难度大,需要专业的知识和工具,且生态系统不够完善,相关的软件库和开发资源相对较少16.
- 技术要求:需要具备专业的芯片设计和制造技术,以及对神经网络算法的深入理解。同时,还需要开发相应的软件工具和开发环境,以支持 NPU 的编程和调试16.
- 适合场景:适用于各种需要进行 AI 处理的设备和场景,如智能手机、平板电脑、智能摄像头、自动驾驶汽车等。在这些场景中,NPU 可以高效地处理图像识别、语音识别、自然语言处理等 AI 任务,提高设备的智能化水平和用户体验136.
TPU
- 优点:专为机器学习设计,采用脉动阵列架构,可高效执行乘法和累加运算,具有高性能和低功耗的特点。对于大规模的数据中心和云计算环境,TPU 可以提供强大的计算能力,加速 AI 模型的训练和推理过程46.
- 缺点:应用场景相对较窄,主要面向数据中心和云计算等大规模计算场景,对于边缘设备和小型终端的支持有限。此外,TPU 的开发和生产成本较高,且需要与特定的硬件和软件平台配合使用,限制了其在一些场景中的应用246.
- 技术要求:需要具备先进的芯片制造工艺和高性能的计算架构设计能力,以及对机器学习算法的深入理解。同时,还需要开发相应的软件框架和工具,以支持 TPU 的编程和应用开发46.
- 适合场景:主要适用于数据中心、云计算平台等大规模计算场景,用于加速 AI 模型的训练和推理。在这些场景中,TPU 可以与 GPU 等其他计算设备配合使用,提供更强大的计算能力,满足大规模 AI 应用的需求46.
六、模型处理方式分析
基于芯片通用框架的模型转换推理
-
优点:
- 通用性强:可以支持多种主流深度学习框架(如TensorFlow、PyTorch等)训练的模型,只需将模型转换为芯片支持的格式,即可在芯片上进行推理,无需对模型进行大量修改。这使得在不同的深度学习研究成果转化为弹载应用时更加便捷,能够快速集成新的模型算法。
- 开发效率高:利用芯片厂商提供的通用推理框架,开发者可以快速部署模型,减少开发周期。例如,使用TensorFlow Serving框架,能够快速搭建模型推理服务,将训练好的模型部署到弹载芯片上,大大缩短了从模型开发到实际应用的时间。
-
缺点:
- 性能可能受限:通用框架为了兼容性,可能无法针对特定的AI算法和弹载应用场景进行深度优化,导致推理性能无法达到最优。在处理一些对实时性要求极高的弹载任务时,可能无法满足快速决策的需求。
- 灵活性不足:对于一些特殊的模型结构或算法,可能无法很好地支持,需要额外的工作来适配。例如,一些新兴的神经网络结构,可能需要对通用框架进行扩展或修改才能正常运行。
结合不同AI算法(如强化学习结合深度学习)
-
优点:
-
增强智能决策能力:深度学习擅长处理感知任务,如目标识别;强化学习擅长处理决策任务,如导弹导航策略。两者结合可以使弹载系统在感知的基础上做出更智能的决策。例如,在导弹的目标攻击过程中,深度学习模型识别出目标后,强化学习算法可以根据战场环境和目标状态,选择最优的攻击策略。
-
适应复杂场景:能够更好地应对复杂多变的战场环境,例如在动态目标跟踪和攻击策略选择中,通过强化学习不断优化决策,提高作战效能。在面对敌方的干扰和伪装时,结合的算法可以动态调整策略,提高导弹的命中率。
-
-
缺点:
-
算法融合难度大:需要深入理解两种算法的原理和实现细节,以实现有效的融合。不同算法的训练和优化方法不同,可能导致开发和调试过程复杂。例如,深度学习模型的训练通常基于大规模的标注数据,而强化学习的训练需要与环境进行交互,如何将两者的训练过程有机结合是一个挑战。
-
计算资源需求高:同时运行两种算法,对芯片的计算能力和内存资源要求较高,可能增加功耗和硬件成本。在弹载系统中,资源有限,需要在性能和资源消耗之间进行平衡。
-
结合强化学习和Transformer
-
优点:
- 序列处理能力强:Transformer在处理序列数据方面表现出色,如在战场态势分析中,对时间序列的情报数据进行处理。强化学习可以基于Transformer的输出进行决策优化,提高态势感知和决策的准确性。例如,在分析敌方雷达信号的时间序列数据时,Transformer可以提取出关键特征,强化学习则可以根据这些特征制定相应的应对策略。
- 泛化能力好:能够学习到更复杂的模式和关系,提高弹载系统在不同场景下的适应性和泛化能力。在面对不同的战场环境和敌方战术时,结合的模型能够更好地应对,提高作战的成功率。
-
缺点:
- 模型复杂度高:Transformer本身是一个复杂的模型,参数量大,计算成本高。与强化学习结合后,对芯片的计算能力和存储能力提出了更高的要求。在弹载系统中,可能会导致芯片无法满足实时计算的需求。
- 训练难度大:训练这种结合模型需要大量的数据和计算资源,且训练过程可能不稳定,需要精细的调参和优化。例如,Transformer的训练需要大量的GPU计算资源,且训练过程容易出现梯度消失或爆炸等问题,与强化学习结合后,这些问题可能会更加复杂。
推荐模型处理方式:先基于芯片通用框架的模型转换推理,再逐步探索结合不同AI算法
原因:
-
基于芯片通用框架的模型转换推理:在项目初期,利用芯片通用框架进行模型转换推理具有明显优势。其通用性强,能快速支持多种主流深度学习框架训练的模型,大大缩短开发周期,可使弹载AI系统尽快实现基本功能。这对于快速验证芯片可行性和满足初步军事需求至关重要。在弹载系统开发的初期阶段,时间紧迫,需要快速搭建起可用的AI系统,基于通用框架的模型转换推理能够快速实现这一目标。
-
逐步探索结合不同AI算法:随着弹载系统应用场景的拓展和对性能要求的提高,结合不同AI算法(如强化学习结合深度学习)能显著增强系统的智能决策能力和对复杂场景的适应能力。虽然算法融合难度大、计算资源需求高,但通过前期基于通用框架的开发积累,团队对芯片性能和应用场景有了更深入了解,此时逐步探索算法融合,可针对性地优化硬件资源利用和算法实现,在满足性能提升需求的同时,有效控制开发风险和成本。在弹载系统有了一定的应用基础后,通过结合不同AI算法,可以进一步提升系统的性能,满足不断变化的作战需求。
AI 芯片适配不同算法的方式及配合工作策略
适配方式
- 硬件架构优化:设计通用的 AI 芯片时,可采用多核架构,不同核心针对不同类型算法进行优化。如部分核心具备强大的卷积计算能力以适配卷积神经网络用于目标识别,部分核心针对强化学习的决策逻辑进行优化,还有部分核心适合处理 RNN 或 LSTM 的序列数据以用于态势感知3.
- 指令集扩展:增加专门针对不同算法的指令集扩展。例如为卷积神经网络设计高效的卷积指令,为强化学习设计特定的策略更新指令,为 RNN 或 LSTM 设计序列处理指令,提高芯片对各算法的执行效率。
- 灵活的内存架构:构建分层的内存架构,包括高速缓存、片上内存和外部内存。根据不同算法的数据访问模式,合理分配和管理内存资源,确保数据的快速读取和存储,提高算法的运行速度3.
芯片配合工作策略
- 单芯片多算法:在弹载系统中,若采用单芯片多算法的方式,可根据任务的优先级和实时性要求,动态分配芯片资源。例如在导弹飞行过程中,当目标识别任务紧急时,优先将更多资源分配给卷积神经网络进行目标识别;在导航决策阶段,将资源向强化学习算法倾斜,以快速生成最优导航策略。这种方式可以充分利用单芯片的资源,减少硬件成本和系统复杂度,但需要高效的任务调度和资源管理机制。
- 多芯片多算法:使用多个芯片分别处理不同的算法,每个芯片专注于特定的任务。如一个芯片专门用于运行卷积神经网络进行目标识别,另一个芯片用于强化学习的导弹导航,还有芯片负责基于 RNN 或 LSTM 的态势感知。这种方式可以实现各算法的并行处理,提高系统的整体性能和实时性,但需要解决芯片间的通信和协同工作问题,确保数据的及时传输和共享。
Transformer 在弹载领域边缘 AI 应用的看法
- 优势:Transformer 的自注意力机制能够有效捕捉序列数据中的长程依赖关系,在弹载领域的态势感知中,对于处理多源、复杂的时间序列情报数据具有很大优势,可提高态势感知的准确性和全面性。其强大的序列处理能力还能更好地应对战场环境中的动态变化,为决策提供更准确的依据。
- 挑战:Transformer 模型复杂度高、参数量大,对弹载系统边缘 AI 芯片的计算能力和存储资源提出了极高要求,可能导致芯片难以满足实时计算的需求。此外,训练 Transformer 模型需要大量的数据和计算资源,且训练过程复杂不稳定,在弹载系统中实现和优化其训练过程具有较大难度4.
- 应用建议:在弹载领域边缘 AI 应用中,可考虑对 Transformer 进行模型压缩和优化,减少参数量和计算量,以适应弹载系统的资源限制。同时,可以探索将 Transformer 与其他轻量级模型结合的方式,发挥各自的优势,提高系统的性能和效率。例如,先使用简单的模型对数据进行初步处理和筛选,再将关键信息输入到 Transformer 中进行进一步分析和决策。
存算一体技术
- 优点:存算一体将存储和计算功能集成在同一芯片上,可解决传统架构中的 “存储墙” 问题,显著降低数据访问延迟,提高计算效率,特别适合处理 AI 大模型等对存储和计算要求高的任务,并且具有低成本、低功耗的优势,符合弹载系统对功耗和成本敏感的特点15.
- 缺点:存算一体芯片的设计和制造难度大,需要全新的架构和工艺,目前技术还不够成熟,存在精度不够高、可扩展性有限等问题,可能影响模型的准确性和芯片的升级能力。
- 为芯片预留空间的方式:在芯片架构设计时,预留一定比例的存算一体模块,以便后续根据需求灵活集成和扩展存算一体功能,同时考虑存算一体模块与其他模块之间的高速数据传输接口。
Chiplet 技术
- 优点:Chiplet 技术通过将多个功能专一的芯粒单元集成,可突破光罩尺寸限制,提高良率,降低制造成本,还能实现不同工艺节点芯粒的混合集成,提高研发效率,缩短上市周期 。在 AI 计算中,Chiplet 架构能为不同计算单元提供快速内部连接,减少数据传输延迟,提升整体算力,实现模块间的动态功耗管理,优化能效比245.
- 缺点:Chiplet 技术需要先进的互连技术和标准来确保芯粒间的无缝通信,同时热管理也是一个关键挑战,此外还对 EDA 工具提出了更高要求,设计和集成的复杂度较高25.
- 为芯片预留空间的方式:采用模块化的设计理念,将芯片划分为多个功能相对独立的区域,以便未来能够方便地集成不同类型的芯粒。预留高速互连通道和接口,以满足 Chiplet 之间的高带宽、低延迟通信需求,同时考虑散热结构和空间布局,以应对可能的热管理问题。
存算一体与 Chiplet 结合
- 可行性:存算一体与 Chiplet 技术具有一定的互补性,可以结合到一起。存算一体的核心是存储与计算的融合,而 Chiplet 则侧重于芯片的模块化和异构集成,将存算一体的芯粒作为 Chiplet 的一种类型,可以在更高层次上实现存储与计算资源的灵活配置和优化,进一步提高芯片的性能和能效比。
- 结合条件:需要解决两者之间的接口标准和通信协议问题,确保存算一体芯粒与其他功能芯粒能够高效协同工作。同时,需要开发相应的设计工具和方法,以支持存算一体 Chiplet 的设计、验证和集成,还需要建立完善的生态系统,包括芯片制造、封装测试等环节的协同合作。
七、弹群作战中AI芯片协同
工作模式
-
集中式协同:在这种模式下,存在一个指挥中心(如预警机、地面指挥站等),负责收集各导弹上AI芯片反馈的信息,如目标识别结果、自身位置与状态等。指挥中心对这些信息进行综合分析后,制定统一的作战策略,并将指令发送给每枚导弹的AI芯片。各芯片根据指令调整自身的任务,例如改变飞行轨迹、确定攻击目标优先级等。例如在打击敌方防空阵地的弹群作战中,指挥中心可根据各导弹反馈的敌方防空火力分布信息,为每枚导弹分配攻击目标和路线,避免导弹之间的冲突,提高整体作战效能。
-
分布式协同:各导弹上的AI芯片之间直接进行通信和信息共享,不需要依赖单一的指挥中心。芯片通过自组织的方式形成一个分布式的网络,根据局部信息和预设的协同规则,自主地做出决策。比如在执行对敌方移动舰队的打击任务时,某枚导弹的AI芯片发现一个高价值目标后,通过与周边导弹的芯片通信,协调多枚导弹从不同方向对该目标进行攻击,实现对目标的包围和精确打击。这种模式的优势在于具有更高的自主性和抗毁性,即使部分导弹受损,其他导弹仍能继续协同作战。
-
混合式协同:结合集中式和分布式协同的优点,在弹群作战初期,由指挥中心进行全局规划和任务分配,确定各导弹的大致作战方向和目标。随着作战的推进,当通信环境复杂或指挥中心受到干扰时,各导弹上的AI芯片切换到分布式协同模式,依据自身的传感器数据和与周边导弹的通信信息,自主调整作战策略。例如在突破敌方防空网的作战中,初期由指挥中心根据敌方防空部署制定弹群的整体突防计划,当进入敌方强电磁干扰区域后,导弹之间通过分布式协同,灵活应对干扰,继续执行作战任务。
所需技术
高速通信技术:
- 射频通信:目前较为成熟的射频通信技术,如微波通信,能够在一定范围内实现导弹之间的高速数据传输。但在复杂电磁环境下,信号容易受到干扰。为解决这一问题,需要采用先进的抗干扰技术,如跳频扩频、自适应波束形成等。跳频扩频技术通过不断改变载波频率,使敌方难以截获和干扰信号;自适应波束形成技术则能根据周围的电磁环境,自动调整天线的辐射方向,增强信号的传输质量。
- 光通信:在弹群作战中,光通信具有高带宽、低延迟和抗干扰能力强的优势。例如,基于激光的自由空间光通信技术,可以在导弹之间建立高速、可靠的通信链路。但光通信也存在受天气影响较大、通信视距有限等问题。因此,需要开发结合射频通信和光通信的混合通信系统,在不同的环境条件下自动切换通信方式,确保通信的稳定性。
分布式计算技术:
- 一致性算法:为了保证各导弹上的AI芯片在分布式协同过程中能够达成一致的决策,需要采用一致性算法。例如,拜占庭容错算法可以在存在部分节点故障或恶意攻击的情况下,确保分布式系统中各节点的状态一致性。在弹群作战中,即使部分导弹的AI芯片出现故障或受到敌方干扰,其他芯片仍能通过该算法达成一致的作战决策。
- 边缘计算:将部分计算任务分布到各导弹的AI芯片上,实现数据的本地处理和分析,减少数据传输量和延迟。例如,在目标识别任务中,各导弹的AI芯片可以利用本地的传感器数据进行初步的目标识别和分类,只将关键信息发送给其他导弹或指挥中心。这样不仅提高了响应速度,还降低了对通信带宽的需求。
任务分配与调度技术:
- 智能任务分配算法:根据弹群的作战目标、各导弹的位置、状态以及传感器能力等因素,为每枚导弹分配最合适的任务。例如,基于遗传算法的任务分配方法,可以通过模拟自然选择和遗传变异的过程,在众多可能的任务分配方案中找到最优解。在打击多个目标的弹群作战中,该算法可以快速确定哪枚导弹攻击哪个目标,以实现整体作战效能的最大化。
- 动态任务调度:在作战过程中,战场环境是动态变化的,需要实时调整任务分配。例如,当某枚导弹发现新的高价值目标或自身出现故障时,动态任务调度算法可以重新评估任务分配方案,将任务重新分配给其他导弹,确保弹群作战的连续性和有效性。
协同定位与导航技术:
- 相对定位技术:各导弹之间需要精确知道彼此的相对位置,以便进行协同作战。例如,基于射频信号的到达时间差(TDOA)和到达角度(AOA)的定位技术,可以通过测量信号在不同导弹之间的传播时间和角度,计算出导弹之间的相对位置。这种技术在复杂环境下具有较高的精度和可靠性。
- 协同导航算法:弹群中的导弹通过共享导航信息,相互辅助进行导航。例如,当某枚导弹的导航系统受到干扰时,可以利用其他导弹的导航数据进行定位和飞行轨迹调整。通过协同导航,提高整个弹群在复杂环境下的导航精度和可靠性。
八、TPU介绍
TPU的全称是Tensor Processing Unit,即张量处理单元. 它可以用于推理,并且有专门用于边缘计算的版本,如谷歌的Edge TPU. Edge TPU是谷歌为在边缘运行AI而设计的专用ASIC芯片,专为在边缘运行TensorFlow Lite ML模型而设计,可在很小的物理占用和很低功耗的限制下提供高性能,从而能够在边缘部署高精度的AI,适用于预测性维护、异常检测、机器视觉、机器人、语音识别等多种应用场景。
TPU 是可以适配不同的模型的,谷歌推出的 TpuGraphs 训练数据集,其内容涵盖了 ResNet、EfficientNet、Mask R-CNN 和 Transformer 等多种热门模型架构,证明了 TPU 对不同模型架构的良好适应性10.
TPU 对深度学习及强化学习推理的帮助
- CNN:CNN 的卷积和池化操作本质是矩阵乘法和加法组合,TPU 的硬件架构针对矩阵运算优化,能高效处理这些计算密集型操作,加速 CNN 模型的推理过程,提升图像识别等任务的效率2311.
- RNN 和 LSTM:RNN 及其变体 LSTM 常用于处理序列数据,但训练存在梯度消失 / 溢出和计算效率低等问题。TPU 可通过并行计算等方式提高计算效率,加速训练和推理过程,使其能更快速地处理自然语言处理、时间序列预测等领域的长序列数据2.
- 强化学习:TPU 可用于加速强化学习模型的训练和推理。如谷歌的 Menger 大规模分布式强化学习基础设施,利用 TPU 加速器实现快速训练迭代,减少芯片放置任务的总体培训时间,还可优化通信和数据传输,提高强化学习系统的可扩展性和性能4.
TPU 的缺点
- 通用性相对不足:TPU 是为特定的机器学习任务和深度学习框架设计的专用芯片,相比通用的 CPU 和 GPU,在处理非 AI 相关的计算任务时表现较差,适用范围较窄2311.
- 开发难度大:TPU 的架构和编程模型与传统的 CPU 和 GPU 有很大差异,开发人员需要掌握专门的知识和技能,学习成本较高,开发难度较大。
- 成本问题:研发和生产成本高,导致其产品价格昂贵,对于一些预算有限的用户和企业来说,采购和使用 TPU 的成本可能过高,限制了其更广泛的应用126.
- 生态系统不够完善:与 CPU 和 GPU 相比,TPU 的生态系统不够成熟,相关的软件库、工具和开发资源相对较少,在一定程度上影响了其在不同领域的推广和应用。
GPU与TPU对比
GPU(图形处理单元)和 TPU(张量处理单元)虽然都用于并行处理,但 GPU 功耗较高,主要原因如下:
- 设计目标差异:GPU 最初为图形渲染设计,需兼顾图形处理多样功能,如顶点处理、光栅化、纹理映射等。这使它具备高度通用性,能处理各类并行计算任务,但硬件资源需灵活分配,难以针对深度学习等特定计算密集型任务深度优化。例如在渲染复杂 3D 场景时,GPU 要同时处理不同类型图形操作,硬件资源无法集中用于单一计算任务,导致功耗较高。TPU 专为深度学习推理设计,硬件架构和计算单元围绕张量运算优化,如矩阵乘法和卷积运算,这是深度学习中常见且计算密集的操作。硬件资源高度集中于此类任务,减少不必要功能模块,大幅提高计算效率,降低功耗。
- 硬件架构区别:GPU 核心数量多但每个核心功能相对复杂,具备完整浮点运算单元、缓存、控制逻辑等,能处理各种复杂计算任务,灵活性高。然而,面对深度学习中大量重复简单矩阵运算,复杂核心设计会带来不必要功耗开销。如执行深度学习卷积操作时,GPU 核心需在多种功能模式间切换,增加功耗。TPU 采用脉动阵列架构,大量简单计算单元按特定方式排列,数据像水流一样在阵列中流动,计算单元只需专注于简单计算任务,减少数据传输和控制开销,提高计算效率,降低功耗。例如,在大规模矩阵乘法运算中,脉动阵列架构可让数据在计算单元间高效流动,避免数据频繁在不同模块间传输带来的功耗浪费。
- 内存访问机制:GPU 内存访问相对灵活,可支持随机读写,满足图形处理中数据随机访问需求。但在深度学习中,数据访问模式相对规则,随机访问灵活性未充分利用,且内存访问带宽限制成为性能瓶颈。为满足计算需求,GPU 需频繁从内存读取数据,导致功耗增加。TPU 针对深度学习数据访问特点优化内存访问机制,采用高带宽内存和本地缓存,减少数据传输延迟和功耗。例如,在执行深度神经网络前向传播时,TPU 可提前将需要的数据从高带宽内存预取到本地缓存,减少内存访问次数,降低功耗。
九、NPU与 SOPC
集成适配性
-
硬件接口兼容性:NPU 专为 AI 任务设计,其硬件接口通常经过精心设计,以便与其他处理器和外设进行高效连接。在高性能 SOPC 中,NPU 能够方便地与片上的其他功能模块,如数据缓存、通信接口等进行集成,实现数据的快速传输和处理。例如,通过高速总线接口,NPU 可以与 SOPC 中的主处理器进行无缝对接,主处理器负责系统的整体控制和任务调度,NPU 专注于 AI 算法的执行,两者协同工作,提升弹载系统的运行效率。
-
功能模块整合:将 NPU 集成到 SOPC 中,可以充分利用 SOPC 的可定制性,将 NPU 与其他特定功能模块进行整合。比如,针对弹载系统中的目标识别任务,可以将 NPU 与图像传感器接口模块、数据预处理模块集成在 SOPC 中,形成一个完整的目标识别子系统。这样的整合可以减少系统的整体复杂度,提高系统的可靠性和稳定性。
满足弹载系统需求
-
低功耗高性能:在弹载系统中,功耗是一个关键因素。NPU 在处理神经网络相关运算时,相较于传统的 CPU 和 GPU,具有更高的性能和更低的功耗。这意味着在有限的能源供应下,NPU 能够高效地运行 AI 算法,如在进行目标识别、态势感知等任务时,能够快速处理大量数据,同时不会消耗过多的电能,有助于延长导弹的续航能力。
-
强大的 AI 处理能力:弹载系统中的许多任务,如目标识别、导航决策等,都依赖于 AI 技术。NPU 对神经网络的优化设计使其能够快速执行深度学习算法,对于提高弹载系统的智能化水平具有重要作用。例如,在复杂的战场环境中,NPU 能够快速对传感器采集到的数据进行分析,准确识别出目标物体,为导弹的攻击决策提供支持。
开发与升级特性
-
开发难度可控:虽然 NPU 的开发需要专业的知识和工具,但随着 AI 技术的发展,越来越多的厂商提供了完善的开发套件和工具链。开发团队可以利用这些工具,基于已有的神经网络模型进行开发和优化,降低开发难度。此外,对于一些常见的 AI 应用场景,如目标识别、语音识别等,已经有成熟的开源模型和算法可供参考,进一步缩短了开发周期。
-
灵活的算法升级:随着 AI 技术的不断发展,新的算法和模型不断涌现。NPU 的设计通常考虑到了算法的可升级性,通过软件更新的方式,可以方便地将新的 AI 算法部署到弹载系统中。这意味着在导弹的整个使用寿命周期内,其 AI 功能可以不断得到优化和提升,以适应不断变化的战场环境和作战需求。
硬件资源动态分配
-
任务调度器:NPU 内部集成智能任务调度器,可实时监控各算法任务需求。当接收到不同算法执行请求时,调度器根据任务优先级、数据量及硬件资源占用情况,动态分配计算单元、缓存等硬件资源。例如,在弹载系统中,当导弹从巡航阶段进入目标识别阶段,任务调度器能将更多资源分配给目标识别算法,如 CNN 相关计算单元,确保其高效运行。
-
资源分区与复用:将 NPU 硬件资源划分为多个功能区域,各区域可灵活配置给不同算法使用。如部分计算单元可专门用于深度学习中卷积运算,在执行 CNN 算法时启用;而在执行强化学习算法时,可重新配置这些计算单元,用于策略网络的计算。同时,通过缓存复用机制,不同算法可共享部分数据缓存,提高资源利用率。
算法存储与加载机制
-
算法库存储:在 NPU 片上或片外存储中,构建算法库,存储多种 AI 算法模型。这些模型以压缩、优化后的格式存储,减少存储空间占用。如将不同类型目标识别的 CNN 模型、用于导航决策的强化学习模型等存储在算法库中。
-
动态加载与卸载:当需要切换算法时,NPU 根据任务需求,从算法库中动态加载相应算法模型到内存中,并卸载当前不需要的算法。例如,在导弹飞行过程中,若要从基于 RNN 的态势感知算法切换到基于 CNN 的目标识别算法,NPU 先卸载 RNN 算法模型,再加载 CNN 算法模型,确保间高效利用,同时快速完成算法切换。
指令集与微码支持
-
通用与专用指令集:NPU 设计包含通用 AI 指令集,可支持多种算法基本操作,如矩阵乘法、激活函数计算等。同时,针对特定算法,如 CNN 的卷积操作、LSTM 的门控操作等,设计专用指令集,提高算法执行效率。在算法切换时,通过指令集的切换,NPU 能快速适配新算法的计算需求。
-
微码更新:通过更新微码,NPU 可实现对新算法的支持和现有算法的优化。当有新算法需要集成到 NPU 中时,可通过更新微码,调整硬件执行逻辑,使其能够高效执行新算法。例如,若出现一种新的目标识别算法,可通过微码更新,让 NPU 的硬件资源更好地适配该算法的计算流程。
软件控制与管理
- 驱动程序与 API:开发专门的 NPU 驱动程序,提供统一的 API 供上层应用调用。在弹载系统软件中,通过调用 API,可实现算法的选择与切换。例如,在导弹的飞行控制软件中,根据不同飞行阶段和任务需求,调用相应 API,控制 NPU 从执行导航算法切换到目标识别算法。
- 算法切换策略:在软件层面制定算法切换策略,综合考虑战场环境、任务优先级、数据可用性等因素。如在检测到目标接近时,软件根据预设策略,控制 NPU 从低功耗的环境监测算法切换到高精度的目标识别算法,确保弹载系统在不同场景下都能高效运行合适的算法。
软件工具链
NPU 的软件工具链是一系列用于开发、调试、优化和部署基于 NPU 的 AI 应用程序的软件工具集合,主要包括以下几类:
- 编译器:如安谋科技 “周易” NPU 的 compass 解析器,可将多种框架的模型转换成 NPU 的中间表示,以便 NPU 进行处理.
- 驱动程序:像 RK3399Pro 的 RKNPU 驱动,被封装在 <boot.img> 文件中,通过替换该文件就能实现驱动更新.
- 调试器:可帮助开发者查找和修复 NPU 应用程序中的错误和问题,安谋科技的 “周易” NPU 软件开源计划中就提供了调试器.
- 开发框架与 API:例如 RKNN C API,开发者可通过它实现 AI 模型的初始化、推理等操作.
- 模型仓库:存储了已验证的开源 NN 模型,便于开发者进行测试和快速上手,“周易” NPU 就有这样的模型仓库.
NPU 软件工具链的使用方便程度因具体产品和工具链而异。一些成熟的 NPU 产品,如 RK3399Pro 的 RKNPU 工具链,提供了完善的文档和示例代码,方便开发者快速上手. 而一些开源的 NPU 软件工具链,如 “周易” NPU 的 compass,虽然具有较高的灵活性,但由于其处于不断发展和完善的阶段,可能在使用过程中需要开发者对源码进行修改和调试以适配更多神经网络模型.
是否需要自主开发 NPU 软件工具链取决于多种因素。如果使用现有的成熟 NPU 产品及其配套的工具链能够满足开发需求,那么通常不需要自主开发。然而,如果开发者有特殊的功能需求,或者现有的工具链无法很好地适配特定的硬件平台或算法,那么可能就需要对现有的工具链进行二次开发,甚至自主开发全新的软件工具链。