- 博客(120)
- 资源 (1)
- 收藏
- 关注

原创 3D深度相机调研【史上最全,不服来战】
文章目录读前须知本文下载1 TOF1.1 Kinect v21.2 PMD CamCube 3.01.3 Mesa Swiss Ranger 40001.4 Creative Senz3D/DepthSense 5251.5 ifm1.6 Basler1.7 Terabee1.8 Phab2 Pro1.9 奥比中光Femto2 双目视觉2.1 ZED2.2 Bumblebee系列2.3 Leap Motion2.4 DUO 3D2.5 Viper工业级双目立体相机2.6 Carnegie Robotics®
2022-03-16 11:05:12
35603
22

原创 ICC使用----ICC 1 Lab Guide学习笔记
文章目录PrefaceICC 1 Lab GuideNote:1.Data Setup & Basic Flow(P27)Learning ObjectivesCreate a Milkyway libraryLoad the Netlist, TLU+, Constraints and ControlsBasic Flow: Design PlanningBasic Flow: PlacementBasic Flow: CTSBasic Flow: Routing2.Design Planning
2020-09-21 08:16:47
11126
1

原创 所有文章汇总
文章目录一、Git[1.Git出现error: could not lock config file C:/Users/.gitconfig: Permission denied](https://blog.csdn.net/qq_42759162/article/details/105027634)2.使用Git命令批量上传文件二、数字IC设计相关知识(一)知识点讲解1.Synopsys逻辑综合及DesignCompiler的使用(二)工具使用1.ModelSim+Debussy联调2.Modelsim的
2020-08-01 23:15:31
1956
2

原创 Synopsys逻辑综合及DesignCompiler的使用
逻辑综合一. 基础知识逻辑综合的目的:决定电路门级结构、寻求时序(性能)和面积的平衡、寻求功耗与时序的平衡、增强电路的测试性。二. 逻辑综合流程Design Compiler使用使用DesignCompiler综合过程:一. Design Compiler打开方式一共有4种打开方式:1.dc_shell-t1.1 在shell中输入dc_shell-t1.2 也...
2020-04-15 18:31:38
30672
11
原创 探秘基带算法:从原理到5G时代的通信变革【十】基带算法应用与对比
在 5G 通信中,信道编码与调制解调技术是保障通信质量和数据传输效率的关键。Polar 码凭借其优异的纠错性能和较低的实现复杂度,被选定为控制信道的编码方案,如在物理广播信道(PBCH)、物理下行控制信道(PDCCH)和物理上行控制信道(PUCCH)中发挥着重要作用。在 PBCH 中,Polar 码用于传输系统广播信息,这些信息包含了小区的基本配置、系统带宽等关键参数,对于用户设备(UE)接入网络至关重要。Polar 码通过信道极化现象,将信道划分为几乎无噪的子信道和完全噪声的子信道,然后在无噪的子信道上传
2025-03-03 17:15:55
1312
2
原创 探秘基带算法:从原理到5G时代的通信变革【九】QPSK调制/解调
Quadrature Phase Shift Keying (QPSK) 是一种相位调制技术,广泛应用于数字通信系统中。它通过将两个信息比特组合成一个符号进行传输,从而提高频谱效率。下面我们详细解释 QPSK 的原理、公式和应用。QPSK 的基本思想是利用四个不同的载波相位来表示四个可能的符号状态。在一个符号周期TsymT_{sym}TsymstA⋅cos2πfctθn0≤t≤Tsymn1234stA⋅cos2πfc。
2025-03-03 17:13:39
1117
原创 探秘基带算法:从原理到5G时代的通信变革【八】QAM 调制 / 解调
正交幅度调制(Quadrature Amplitude Modulation,QAM)是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。这种调制方式因此而得名。同其它调制方式类似,QAM通过载波某些参数的变化传输信息。在QAM中,数据信号由相互正交的两个载波的幅度变化表示。模拟信号的相位调制和数字信号的PSK可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。由此,模拟信号频率调制和数字信号FSK也可以被认为是相位调制(PSK)的特例,因
2025-03-03 17:10:53
1501
原创 探秘基带算法:从原理到5G时代的通信变革【七】FFT/DFT
傅里叶变换(Fourier Transform)是信号处理和数据分析领域的重要工具,而离散傅里叶变换(Discrete Fourier Transform,DFT)和快速傅里叶变换(Fast Fourier Transform,FFT)则是其在数字领域的核心实现。本文将深入探讨DFT与FFT的原理、方法论、分类体系、优缺点以及实际应用方向,并通过详细的公式推导和实例分析帮助读者全面掌握这一技术。快速傅里叶变换(FFT)是一种高效的算法,用于加速DFT的计算。图:DFT与FFT在音频信号处理中的应用。
2025-03-03 17:05:13
1169
原创 探秘基带算法:从原理到5G时代的通信变革【六】CRC 校验
在现代通信系统中,数据传输的完整性是确保信息正确传递的关键。一个完整的数据帧通常由多个部分构成,包括帧头、数据位和帧尾等。其中,校验位的作用尤为重要,它通过对原始数据进行特定算法计算生成一个校验值,并将其附加到数据帧中。接收方接收到数据后,使用相同的算法对原始数据重新计算校验值并与接收到的校验值进行比较。如果两者一致,则说明数据在传输过程中未发生错误;否则,表明数据可能被篡改或损坏,需要丢弃并请求重发。
2025-03-03 17:02:19
941
原创 探秘基带算法:从原理到5G时代的通信变革【五】CORDIC算法
在现代计算领域,许多复杂数学运算(如三角函数、指数函数和对数函数)的高效实现离不开一种经典算法——CORDIC(Coordinate Rotation Digital Computer)。本文将深入探讨CORDIC算法的原理、分类体系、优缺点分析以及其广泛的应用方向,并通过详细的公式推导和实例解析帮助读者理解这一强大的数字计算工具。CORDIC算法是一种用于高效计算旋转、矢量模长和三角函数等操作的迭代方法。它的核心思想是通过一系列简单的移位和加法操作来逼近复杂的数学运算。这种方法特别适合硬件实现,因为移位和
2025-03-03 16:56:15
843
原创 探秘基带算法:从原理到5G时代的通信变革【四】Polar 编解码(二)
极化编码(Polar Code)是一种由Erdal Arikan在2009年提出的新型信道编码方法,其核心思想是通过信道极化技术将多个独立的二进制输入离散无记忆信道(B-DMC, Binary-input Discrete Memoryless Channel)分裂为若干个极化子信道,其中一部分信道变得非常可靠,另一部分则变得非常不可靠。通过对这些极化子信道的选择和分配,可以实现接近香农极限的通信性能。巴氏参数Z(W)Z(W)Z(W)是衡量信道可靠性的关键指标。对于一个给定的信道WWW,Z(W)Z(W)Z(
2025-03-03 16:52:00
1073
原创 探秘基带算法:从原理到5G时代的通信变革【四】Polar 编解码(一)
在信息论中,香农(Shannon)提出了著名的信道容量理论,指出在加性白高斯噪声(AWGN)信道上,给定信噪比 (SNR) 和带宽 (W) Hz 的情况下,能够实现可靠传输的最大速率由公式C=Wlog2(1+SNR)C = W \log_2(1 + SNR)C=Wlog2(1+SNR)给出。这意味着在理论上存在一种编码方式,可以在达到信道容量的同时保证通信的可靠性。然而,在香农提出这一理论后的几十年里,尽管多种信道编码技术被开发出来,但它们要么无法严格证明能达到信道容量,要么复杂度过高,难以实际应用。直
2025-03-03 16:49:41
1268
原创 探秘基带算法:从原理到5G时代的通信变革【三】Turbo 编解码
Turbo的编码器非常简单,由两个并行的卷积码编码器 (Encoder) 组成。所谓卷积码,即输出为输入和一段已知序列的卷积。与其对应的分组码则是将序列分段,每段序列和编码矩阵相乘得到输出序列(在后续发展中,Turbo码也拥有了分组码版本)。在Turbo码中,输入序列 (Input)在进入第二个编码器时须经过一个交织器 (Interleaver),用于将序列打乱。两个编码器的输出(Output I 和 II)共同作为冗余信息添加到信息序列(Systematic output)之后,对抗信道引起的错误。
2025-03-03 16:29:23
1369
原创 探秘基带算法:从原理到5G时代的通信变革【二】Viterbi解码
在深入探讨 Viterbi 解码算法之前,有必要先了解其赖以依存的卷积码和网格图的基本概念。卷积码作为一种重要的纠错编码方式,与分组码有所不同,它并非将输入数据划分为独立的分组进行编码,而是通过将输入数据与编码器的状态进行卷积运算来生成输出码字。这一过程中,编码器的状态会随着输入数据的变化而不断更新,使得输出码字不仅与当前输入数据相关,还与之前的输入数据存在联系,从而能够利用历史信息来提高纠错能力。以一个简单的 (2, 1, 3) 卷积码编码器为例,其中 “2” 表示输出码字的位数,“1” 表示输入数据的位
2025-03-03 16:16:48
1156
原创 探秘基带算法:从原理到5G时代的通信变革【一】引言
在现代通信技术飞速发展的当下,从日常使用的智能手机、智能家居设备,到复杂的卫星通信系统、5G 通信网络,通信技术已深度融入社会生活的各个方面。而基带算法作为通信系统的核心,对通信质量和效率起着决定性作用。基带信号是由信源发出的未经调制的原始电信号,其频率较低,信号频谱从零频附近开始,呈低通形式,可分为数字基带信号和模拟基带信号 。基带算法负责对这些基带信号进行处理,包括编码、解码、调制、解调等关键操作,是实现高效、可靠通信的基石。在通信技术的发展过程中,这些基带算法不断演进以满足更高的传输速率、更低的误码率
2025-03-03 16:03:56
878
原创 探秘 DeepSeek R1:AI 领域的革新力量
同时,与 OpenAI 的 GPT 模型不同,它对用户没有限制,OpenAI 对免费用户每周限制为 50 条消息,而 DeepSeek R1 提供无限制访问,这对于那些寻求开放且经济高效的 AI 模型的用户来说,具有极大的吸引力。当被问到某个历史事件时,它若最初给出错误日期,在被要求解释答案时,会进行内部验证,识别错误并自我纠正,这种自我意识和透明度在 AI 模型中极为罕见,大大增强了用户对它的信任。在业务流程优化方面,它可以分析企业的运营数据,找出潜在的效率提升点,帮助企业降低成本,提高竞争力。
2025-02-19 15:45:00
1436
原创 在Deepseek-R1-ZERO出现前,为何无人尝试放弃微调对齐,通过强化学习生成思考链推理模型?
ORM(结果奖励模型)定义:对模型生成的最终结果进行整体评估,仅分配一个稀疏奖励值(如正确/错误)。特点:训练数据需求低(仅需最终结果标注)适用于答案明确、无需中间过程验证的任务(如选择题)PRM(过程奖励模型)定义:对推理过程中的每个中间步骤进行细粒度评估,提供步骤级别的奖励信号。特点:需要步骤级人工标注(如PRM800K数据集含80万条步骤标签)更适合复杂推理任务(如数学证明、多步逻辑推导)
2025-02-18 17:19:02
606
原创 DeepSeek 优化方式
MoE结构的模型具有很强的稀疏性,在执行推理任务的时候,每次只会激活其中一部分的模型参数。在GPU算子的使用上,团队引入Marlin算子作为GPU计算的内核,它能够非常高效地进行量化后的矩阵计算,和torch这些计算量化后的矩阵乘法的库相比,使用Marlin算子完成在GPU上面的计算大概可以达到3.87倍的理想加速效果。值得关注的是,KTransformers不止是一个固定的推理框架,也不只能推理DeepSeek的模型,它可以兼容各式各样的MoE模型和算子,能够集成各种各样的算子,做各种组合的测试。
2025-02-18 17:17:19
843
原创 DeepSeek V3原理
混合专家模型(Mixture of Experts, MoE)是一种模块化的神经网络架构,其核心思想是通过多个“专家”子模型分工协作来解决复杂的任务。每个专家通常是一个独立的神经网络,专注于处理特定类型的输入或任务。例如,在自然语言处理领域,一个专家可能擅长处理语法结构,而另一个专家则更擅长语义理解。门控网络(Gating Network)负责根据输入数据的特性动态分配任务给不同的专家,并决定每个专家对最终输出的贡献权重。这种设计使得MoE能够高效地处理多样化的任务,同时避免单一模型在复杂场景下的过载问题。
2025-02-18 17:12:16
1470
原创 DeepSeek R1原理
强化学习是智能体(agent)与环境(environment)进行交互的过程,智能体在环境中采取一系列行动(action),环境根据智能体的行动给出相应的奖励(reward)和下一个状态(state),智能体的目标是通过学习找到一个最优策略,使得长期累积奖励最大化。这个过程就像一个人在不断尝试不同的行为,以获得最大的回报,如机器人学习行走、游戏玩家学习玩游戏等场景都可以用强化学习来建模。
2025-02-18 17:10:14
1025
原创 DeepSeek 简介
DeepSeek(深度求索),是一家在2023年7月17日成立的公司深度求索所开发的大模型名称。公司坐落于杭州,是幻方量化旗下的子公司,全称是杭州深度求索人工智能基础技术研究有限公司。DeepSeek开发团队是由一群年轻且富有才华的高校毕业生组成,团队创始人梁文锋,是量化投资领域的资深专家,拥有丰富的量化投资经验和AI技术背景。其它主要成员大多数来自清华大学、北京大学和浙江大学等国内顶尖高校。包括第一代推理模型 DeepSeek-R1-Zero 和 DeepSeek-R1。
2025-02-18 17:08:08
833
原创 弹载AI芯片产品定位和技术路线
TPU的全称是Tensor Processing Unit,即张量处理单元. 它可以用于推理,并且有专门用于边缘计算的版本,如谷歌的Edge TPU. Edge TPU是谷歌为在边缘运行AI而设计的专用ASIC芯片,专为在边缘运行TensorFlow Lite ML模型而设计,可在很小的物理占用和很低功耗的限制下提供高性能,从而能够在边缘部署高精度的AI,适用于预测性维护、异常检测、机器视觉、机器人、语音识别等多种应用场景。
2025-01-13 09:24:05
1211
原创 NVIDIA JetPack SDK介绍
NVIDIA JetPack SDK 是为Jetson模块提供动力的最全面解决方案,用于构建端到端加速的人工智能应用,大大缩短了产品上市时间。。:这是一个板级支持包(BSP),包括引导加载程序、Linux内核、Ubuntu桌面环境、NVIDIA驱动程序、工具链等。它还包括安全特性和空中下载技术(OTA)功能。Jetson AI 栈:CUDA 加速的人工智能栈,包括一整套用于加速GPU计算、多媒体、图形和计算机视觉的库。它支持如Metropolis这样的应用程序框架,用于构建、部署和扩展视觉AI应用;
2025-01-09 16:30:05
1723
原创 承影Ventus GPGPU【五】LLVM编译器配置
本文是承影Ventus GPGPU系列第五篇,主要是介绍承影Ventus GPGPU的LLVM编译器的安装与配置。OpenGPGPU。承影Ventus GPGPU【一】简介承影Ventus GPGPU【二】指令集承影Ventus GPGPU【三】软件工具链承影Ventus GPGPU【四】硬件结构承影Ventus GPGPU【五】LLVM编译器配置在本节中,我们将介绍如何编写可以在 Spike 中运行的 Ventus GPGPU 扩展程序。由于软件栈尚未成熟,此部分内容可能会在未来进行大量修改。
2025-01-03 13:41:16
1104
7
原创 承影Ventus GPGPU【四】硬件结构
本文是承影Ventus GPGPU系列第四篇,主要是介绍承影Ventus GPGPU的硬件结构。OpenGPGPU。承影Ventus GPGPU【一】简介承影Ventus GPGPU【二】指令集承影Ventus GPGPU【三】软件工具链承影Ventus GPGPU【四】硬件结构承影Ventus GPGPU【五】LLVM编译器配置“乘影”GPGPU设计中,每个流多处理器单元(SM)能够处理多个线程束(warp),每个warp包含32个线程。
2025-01-03 13:38:50
1392
1
原创 承影Ventus GPGPU【三】软件工具链
本文是承影Ventus GPGPU系列第二篇,主要是介绍承影Ventus GPGPU的指令集。OpenGPGPU。承影Ventus GPGPU【一】简介承影Ventus GPGPU【二】指令集承影Ventus GPGPU【三】软件工具链承影Ventus GPGPU【四】硬件结构承影Ventus GPGPU【五】LLVM编译器配置“乘影”GPGPU通过兼容OpenCL的编程模型,实现了高效的并行计算。主机端负责与用户程序交互、资源分配和设备管理,而设备端则执行具体的内核。
2025-01-03 13:36:39
1017
原创 承影Ventus GPGPU【二】指令集
本文是承影Ventus GPGPU系列第二篇,主要是介绍承影Ventus GPGPU的指令集。OpenGPGPU。承影Ventus GPGPU【一】简介承影Ventus GPGPU【二】指令集承影Ventus GPGPU【三】软件工具链承影Ventus GPGPU【四】硬件结构承影Ventus GPGPU【五】LLVM编译器配置vle32.v:从内存中加载 32 位数据到向量寄存器,逐元素加载。vlse32.v:从内存中加载 32 位数据到向量寄存器,带有步长的逐元素加载。
2025-01-03 11:51:39
1030
原创 承影Ventus GPGPU【一】简介
本文是承影Ventus GPGPU系列第一篇,主要是介绍承影Ventus GPGPU的一些基础概念和设计理念。OpenGPGPU。承影Ventus GPGPU【一】简介承影Ventus GPGPU【二】指令集承影Ventus GPGPU【三】软件工具链承影Ventus GPGPU【四】硬件结构承影Ventus GPGPU【五】LLVM编译器配置简介“乘影”GPGPU概述乘影”是清华大学集成电路学院开发的一款基于RISC-V向量扩展(RVV)的开源通用GPU(GPGPU)。
2025-01-03 11:46:16
1197
原创 在Typora中实现自动编号
要应用上述CSS代码,您需要将其保存为.css文件。打开Typora。前往文件偏好设置外观。点击主题里面的打开主题文件夹按钮。,将上述代码复制进去,保存退出。完成以上设置后,重新打开或新建文档时,您应该可以看到标题已经自动编号了。
2025-01-03 11:28:38
1351
原创 使用Python脚本对Typora中的全部标题升降级
对Typora的标题我总是将一级标题作为唯一一个的总标题,但是在写一些内容比较长分类比较多的东西的时候标题有些不够用,因为它最多就是六级标题…另外,有些时候想写系列博客,一开始定了个总的标题,后来章节太多了,想分开写了,又得集体修改标题。因此,我写了一个python脚本,准确的说是我调教AI工具为我生成了一个python脚本,来解决这个问题。为了实现 Typora 中一键提升或降低当前文件所有目录级别的功能,我们可以编写一个 Python 脚本来处理 Markdown 文件。
2025-01-03 10:45:40
771
原创 AI 芯片在弹载系统中的应用挑战
从用户的角度来看,当前AI芯片的痛点涵盖了从硬件性能到软件工具链,再到生态系统和成本等多个方面。提供更平衡的通用算力与专用算力组合;简化工具链,提升开发效率;解决内存墙问题,优化数据传输;控制功耗和散热,提升能效比;推动生态系统的统一和标准化;实现推理与训练的融合,支持在线学习;加强安全性和隐私保护;提供更具性价比的产品;推广模块化设计,增强系统的灵活性;加速Chiplet技术的标准化和应用。
2024-12-26 10:14:54
937
原创 智能化军事【三】军事AI应用痛点及解决方案
文章目录前言军事AI应用痛点及解决方案**能效比****神经网络结构****D载领域应用****性能分析**简介军事大模型评估体系构建军事大模型评估框架军事大模型评估流程军事需求域智能任务域性能表现域评估指标域军事大模型评估基础支撑衔接适配维基础服务维方法工具维“艾武大模型+”系统设计仿真系统**分布式协同**参考文献汇总参考资料前言本文是智能化军事系列文章第三章——军事AI应用痛点及解决方案。系列文章链接:军事AI应用痛点及解决方案尽管深度学习技术在目标识别领域取得了显著进展,但
2024-12-24 13:57:15
2765
原创 智能化军事【二】军事AI应用场景
本文是智能化军事系列文章第二章——军事AI应用场景。导弹武器精确制导技术是指导弹武器感知外部复杂场景信息,并完成对感兴趣目标的探测、识别与跟踪,导引导弹对目标实现精确打击的技术。精确制导技术对于提高导弹武器装备复杂作战环境下对多目标的打击能力起着重要作用。有两方面关键要素影响导弹武器对目标精确打击的适应性:目标场景信息获取能力与感兴趣目标自动识别能力。目标场景。
2024-12-24 13:54:54
2637
原创 智能化军事【一】智能赋能OODA环
本文是智能化军事系列文章第一章——智能赋能OODA环。随着科学技术的飞速发展,信息化支持下的体系作战将是未来战争的一种主要样式 ,基于“感知-判断-决策-行动(OODA)”成为未来战争的重要制胜机理。战术层面的指挥控制一般以观察‑判断‑决策‑行动(Observe‑orient‑decide‑act,OODA)环为指导。由于战场环境日趋复杂、对抗多域多维,从战场态势到作战策略的映射关系复杂,给OODA环快速解算带来了新的挑战。
2024-12-24 13:51:13
2779
原创 强化学习与深度学习以及相关芯片之间的区别
它通过构建具有很多层的神经网络(如多层感知机、卷积神经网络CNN、循环神经网络RNN等),自动从大量的数据中学习特征表示。例如,在图像识别任务中,深度学习模型可以从大量的图像数据中学习到图像中不同物体的特征,像边缘、纹理等,进而判断图像中物体的类别。智能体根据环境状态采取行动,环境会根据智能体的行动反馈奖励信号(reward),智能体的目标是最大化长期累积奖励。比如训练一个机器人在迷宫中寻找宝藏,机器人(智能体)每走一步(行动),根据是否更接近宝藏(环境反馈的奖励)来学习最佳的行走策略。
2024-12-23 11:47:10
1110
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人