【语义分割系列】基于camvid数据集的Deeplabv3+分割算法(一)

该博客详细介绍了如何在Camvid数据集上应用Deeplabv3+算法,通过Xception、Resnet50和Ghostnet三种骨干网络进行实验,发现Resnet50在mIOU和参数量方面表现最优。作者还分享了代码实现和实验结果,指出训练时可适当增加epoch以提升效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于camvid数据集的Deeplabv3+分割算法

前言

本章详细介绍了在公开数据集Camvid上,使用Deeplabv3+算法做对比实验。首先进行了Deeplabv3+的骨干网络实验,分别使用了Xception、resnet50、ghostnet等骨干网络进行实验。然后选择了轻量级的ghostnet作为backbone,再其基础上进行优化,在decoder部分使用了CFAC结构,在不引入过多参数量的情况下,有效地提升了mIOU。后续会进一步优化结构,总之本文内容非常适合有毕设需求和论文需求的小伙伴。
参考代码: Deeplabv3+

基础代码:SegBase (密码:p5y8)
在这里插入图片描述

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值