01背包+滚动数组+完全背包

背包问题

01背包

定义:在 M M M件物品取出若干件放在空间为 V V V的背包里,每件物品的体积为 V 1 V_1 V1 V 2 V_2 V2 V n V_n Vn,与之相对应的价值为 W 1 W_1 W1 W 2 W_2 W2 W n W_n Wn

01背包的约束条件是给定几种物品,每种物品有且只有一个,并且有权值和体积两个属性。

在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。

(故称为01背包。)

解决这个问题我们需要从前一个状态递推到下一个状态,最终递推到我们想要的状态。

01背包题目的雏形是:

N N N件物品和一个容量为 V V V的背包。第 i i i件物品的体积是 c [ i ] c[i] c[i],价值是 w [ i ] w[i] w[i]求解将哪些物品装入背包可使价值总和最大。

这个问题核心的矛盾有两处:1.背包的容量,2.所装物品的价值。

所以,我们不妨假设背包内物品的价值为 F ( I , C ) F(I,C) F(I,C) 。( I I I是对应的物品序号, C C C是它的体积)

阶段:前 I I I 件物品中,已经选取若干件物品放在背包中

状态:前 I I I 件物品,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值

决策:第 I I I 件物品放或者不放

由此,其状态转移方程为:

f [ i ] [ v ] = m a x ( f [ i − 1 ] [ v ] , f [ i − 1 ] [ v − c [ i ] ] + w [ i ] ) f[i][v] = max({f[i-1][v],f[i-1][v-c[i]]+w[i]}) f[i][v]=max(f[i1][v],f[i1][vc[i]]+w[i])

理解:对于第 i i i 件物品,要么不放背包: f [ i − 1 ] [ v ] f[i-1][v] f[i1][v];要么就放入背包: f [ i − 1 ] [ v − c [ i ] ] + w [ i ] f[i-1][v-c[i]]+w[i] f[i1][vc[i]]+w[i]

(放入背包,就是 − c [ i ] -c[i] c[i] 的体积,然后价值 + w [ i ] +w[i] +w[i] 。)

代码如下:

void DP(int v,int m)//m个物品,背包体积为v
{
	f[0][0]=0;
	for(int i=1;i<=m;++i)
		for(int j=0;j<=v;++j)	
		{
			f[i][j]=f[i-1][j];
			if(j>=c[i])
				f[i][j]=max(f[i][j],f[i-1][j-c[i]]+w[i]);
		}
}

优化:滚动数组

滚动数组是一种能够在动态规划中降低空间复杂度的方法。

有时某些二维dp方程可以直接降阶到一维,在某些题目中甚至可以降低时间复杂度,是一种极为巧妙的思想。

简要来说,就是通过观察dp方程来判断需要使用哪些数据,可以抛弃哪些数据。

一旦找到关系,就可以用新的数据不断覆盖旧的数据量来减少空间的使用

从而实现“滚动”。

例:

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n,a[4];	scanf("%d",&n);//a[0]不用 
	a[1]=1; a[2]=1;
    for(int i=1;i<=n;++i)
    {
        a[3] = a[1] + a[2];
		printf("%d ",a[1]); 
        a[1] = a[2];
        a[2] = a[3];
    }
    return 0;
}
//输入n,得到前n项斐波那契数列。
//其实只用局部变量也可以。

a 1 a_1 a1 a 2 a_2 a2不断的更新迭代,从而完成斐波那契数列的计算。

在01背包中,问题核心的矛盾有两处:1.背包的容量,2.所装物品的价值。

那么对于物品的序号 i i i,便是一个可以抛弃的数据。

我们让 f [ i ] f[i] f[i]的数据,覆盖在 f [ i − 1 ] f[i-1] f[i1]上。

(就是表格法只用一层表格。)

这时我们的 F F F函数只有一个参数 C C C

也就是说我们在每次遍历时,背包里面刚开始存的是上一个状态的,核心代码变成了这样:

for(i=1;i<=m;++i)//枚举个数
    for(j=c[i];j<=n;++j)//枚举容量
        f[j] = max(f[j],f[j-c[i]] + w[i]);

像之前那样的思考:

如果 j < c [ i ] j< c[i] j<c[i] 之前是 f [ i ] [ j ] = f [ i − 1 ] [ j ] f[i][j] = f[i-1][j] f[i][j]=f[i1][j]

这里就不考虑 f [ j ] f[j] f[j] ,所以 f [ j ] f[j] f[j] 将保存上一次的状态,等价于上述的式子。

如果 j ≥ c [ i ] j \geq c[i] jc[i],之前是 f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − c [ i ] ] + w [ i ] ) f[i][j] = max(f[i-1][j],f[i-1][j-c[i]] + w[i]) f[i][j]=max(f[i1][j],f[i1][jc[i]]+w[i])

现在是 f [ j ] = m a x ( f [ j ] , f [ j − c [ i ] ] + w [ i ] ) f[j] = max(f[j],f[j - c[i]] + w[i]) f[j]=max(f[j],f[jc[i]]+w[i])

两者都是在考虑 i − 1 i-1 i1个物品时容量为 j j j的最大价值,和上一状态要把这个物品放进去这两个状态之间
得到的最大价值。

既然都是等价的,理论上我们应该可以直接套用这个新的板子。

但是,

其实依然存在一些问题,等价但不完全等价,关键点在于循环顺序

试着考虑这样的一个问题,我们考虑 j j j 状态和 2 j 2j 2j 状态:

j j j 状态的所面临的问题:

f[j] = max(f[j],f[j-c[i]] + w[i]);

2 j 2j 2j 状态所面临的问题:

f[2j] = max(f[2j],f[2j-c[i]] + w[i]);

j = c [ i ] j=c[i] j=c[i] 时我们可以看到:

f[j] = max(f[j],f[0] + w[i]);
f[2j] = max(f[2j],f[j] + w[i]);
//j=c[i];
//j-c[i]=0;
//2j-c[i]=j;

对于同一个物品 c [ i ] c[i] c[i],在循环到 j = c [ i ] j=c[i] j=c[i] 2 j 2j 2j时都要考虑放与不放的问题,

所以我们可能在 f [ j ] f[j] f[j]时已经把这个物品放进去了,但是在 f [ 2 j ] f[2j] f[2j]时我们又放了一次,

这就违背了题目中每个物品只有一件的题意。

问题出在哪里?

理论上难道不是等价的吗?

其实我们可以发现 f [ 2 j ] = m a x ( f [ 2 j ] , f [ j ] + w [ i ] ) f[2j] = max(f[2j],f[j] + w[i]) f[2j]=max(f[2j],f[j]+w[i])

这里的 f [ j ] f[j] f[j]如果已经被更新过,那么它保存的就是这个状态,而不是上一个状态

真正的优化:

所以我们重新考虑循环的顺序,我们采用倒序循环,也就是

void DP(int v,int m)//m个物品,背包体积为v
{
    for(int i=1;i<=m;++i)
        for(int j=v;j>=c[i];--j)
            f[j]=max(f[j],f[j-c[i]]+w[i]);
}

这样我们就可以保证 m a x max max中比较的状态都是上一个状态。

完全背包

定义:

N N N种物品和一个容量为 V V V的背包,每种物品都有无限件可用。第 i i i 种物品的体积是 c i c_i ci ,价值是 w i w_i wi

求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。

(与01背包的区别就是,物品可以无限使用。)

如果仍然按照解01背包时的思路:令 f [ v ] f[v] f[v] 表示前 i i i 种物品恰放入一个容量为 v v v 的背包的最大权值。

仍然可以按照每种物品不同的策略写出状态转移方程:

f [ j ] = m a x ( f [ j ] , f [ j − k ∗ c ] + k ∗ w ) ( 0 ≤ k ∗ c ≤ v ) f[j]=max({f[j],f[j-k*c]+k*w})(0 \leq k*c \leq v) f[j]=max(f[j],f[jkc]+kw)0kcv)

(k是所取物品的个数。)

说到多次使用,前一篇文章中提到过01背包的错误写法:顺序循环,

错误的原因便是在背包中可能多次的加入了同一件物品。

而这正是完全背包的写法:

for(i=1;i<=m;++i)//枚举个数
    for(j=c[i];j<=n;++j)//枚举容量
        f[j] = max(f[j],f[j-c[i]] + w[i]);
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值