HOTPOTQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Dataset
HotpotQA是2018年新提出的一个多跳推理问答数据集,本文主要来看数据集的格式。
从图上可以看出数据集还是比较大的,训练集分为了三个难度:easy、medium、hard,其中medium占主要部分。
整个数据集其实还可以分成两类:distractor和fullwiki。distractor的数据包含以下的几个部分:
- 问题
- 问题的类型
- 十段文章,两段与问题答案相关的,八段不相关的,因此叫做distractor
- supporting facts,与答案相关的段落中的与答案直接相关的句子
- 答案
下图是一个例子,绿色的部分就是数据集里提供的supporting facts。
下图是问题的所有类型
而fullwiki的数据集属于是open-domain的开放域问答任务。
Baseline Model
下图是论文中提出的baseline模型,可以看得出与之前的MRC模型有一些相似之处,不过这里我们需要做多任务学习:在预测答案span的同时判断当前句子是否为supporting fact。