6大性质
- 性质1
行列式与它的转置行列式相等 - 性质2
对换行列式的两行(列),行列式变号
推论: 如果行列式有两行(列)完全相同,则此行列式等于零 - 性质3
行列式的某一行(列)中所有的元素都乘同一数k.等于用数k乘此行列式
推论: 行列式中某一行(列)中所有元素的公因子可以提到行列式的外面 - 性质4
行列式的中如果有两行(列)元素成比例,则此行列式等于零 - 性质5
若行列式的某一行(列)元素都是两数之和,例如第i行元素都是两数之和:
则D等于下列两个行列式之和 - 性质6
把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去行列式不变
行列式 按列行展开
- 引理
一个n阶行列式,如果其中第i行所有元素除(i,j)元aij外都为零,那么这行列式等于aij与它的代数余子式的乘积,即D=aijAij\ - 定理2
行列式等于它的任一行(列)的元素与对应的代数余子式乘积之和
范德蒙德行列式
Dn = 所有的(xi-xj)相乘 其中 n>=i>j>=1