行列式的性质

6大性质

  • 性质1
    行列式与它的转置行列式相等
  • 性质2
    对换行列式的两行(列),行列式变号
    推论: 如果行列式有两行(列)完全相同,则此行列式等于零
  • 性质3
    行列式的某一行(列)中所有的元素都乘同一数k.等于用数k乘此行列式
    推论: 行列式中某一行(列)中所有元素的公因子可以提到行列式的外面
  • 性质4
    行列式的中如果有两行(列)元素成比例,则此行列式等于零
  • 性质5
    若行列式的某一行(列)元素都是两数之和,例如第i行元素都是两数之和:
    则D等于下列两个行列式之和
  • 性质6
    把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去行列式不变

行列式 按列行展开

  • 引理
    一个n阶行列式,如果其中第i行所有元素除(i,j)元aij外都为零,那么这行列式等于aij与它的代数余子式的乘积,即D=aijAij\
  • 定理2
    行列式等于它的任一行(列)的元素与对应的代数余子式乘积之和

范德蒙德行列式
在这里插入图片描述
Dn = 所有的(xi-xj)相乘 其中 n>=i>j>=1

利用行列式性质求解行列式通常可以通过如下几个步骤进行: 1. 确定行列式的阶数:行列式的阶数是指行列式的行数和列数相等的数目。例如,一个3阶行列式有3行和3列。 2. 根据行列式的定义:行列式是一个数学工具,用于计算矩阵的性质行列式的值可以通过以下公式计算: - 对于2阶行列式: | a b | | c d | 行列式的值等于 ad - bc。 - 对于3阶行列式: | a b c | | d e f | | g h i | 行列式的值等于 aei + bfg + cdh - ceg - bdi - afh。 - 对于更高阶的行列式,可以使用展开定理进行计算。展开定理是将行列式按照某一行或某一列展开成多个次级行列式的和。在计算次级行列式时,可以继续使用展开定理,直到得到2阶行列式为止。 3. 利用行列式性质简化计算:行列式有一些性质可以用来简化计算,例如行列式性质之一是,如果行列式的某一行(或某一列)中所有元素都是0,则该行列式的值为0。此外,行列式的值不受行列互换的影响,即交换行或列的位置不会改变行列式的值。 4. 使用计算工具或编程语言进行计算:行列式的计算可以手动进行,但对于高阶行列式而言,计算过程可能较为复杂和繁琐。因此,可以使用一些计算工具或编程语言进行行列式的计算,例如Matlab、Python中的NumPy等。 综上所述,利用行列式性质求解行列式可以通过确定阶数、应用行列式的定义和性质、以及使用适当的计算工具或编程语言来实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值