本篇文章首先引入行列式转置的概念,然后逐一给出了行列式的七个基本性质,需要注意的是:对行成立的性质对列也同样成立。最后强调了性质7的重要性,并总结了在做题过程中的规范和注意事项。
1 转置
将行列式的行做成列,转置记作: D T D^T DT或 D ’ D^’ D’(T表示Transformers)。
D = ∣ 1 2 3 1 1 1 8 8 8 ∣ D=\begin{vmatrix} 1&2&3\\ 1&1&1\\ 8&8&8\\ \end{vmatrix} D=
118218318
D T = ∣ 1 1 8 2 1 8 3 1 8 ∣ D^T=\begin{vmatrix} 1&1&8\\ 2&1&8\\ 3&1&8\\ \end{vmatrix} DT= 123111888
对行列式转置之后再转置等于原行列式,即 ( D T ) T = D (D^T)^T=D (DT)T=D。可以发现,对行列式求 2 n ( n ≥ 1 ) 2n(n≥1) 2n(n≥1)次转置仍然等原行列式。
2 性质
2.1 性质1
行列式转置,值不变,即 D T = D D^T=D DT=D(对行成立的性质对列也成立)。
举例:
D = ∣ ① 2 3 4 1 1 1 ⑥ 2 ⑧ 8 8 9 9 ⑨ 3 ∣ D=\begin{vmatrix} ①&2&3&4\\ 1&1&1&⑥\\ 2&⑧&8&8\\ 9&9&⑨&3\\ \end{vmatrix} D=
①12921⑧9318⑨4⑥83
行列式 D D D中 ①⑥⑧⑨ ①⑥⑧⑨ ①⑥⑧⑨项的行标为4级标准排列 1234 1234 1234,列标排列为 1423 1423 1423,所以为该项使用第一种定义展开: ( − 1 ) N ( 1432 ) 1 × 6 × 8 × 9 (-1)^{N(1432)}1×6×8×9 (−1)N(1432)1×6×8×9。
D T = ∣ ① 1 2 9 2 1 ⑧ 9 3 1 8 ⑨ 4 ⑥ 8 3 ∣ D^T=\begin{vmatrix} ①&1&2&9\\ 2&1&⑧&9\\ 3&1&8&⑨\\ 4&⑥&8&3\\ \end{vmatrix} DT= ①234111⑥2⑧8899⑨3
转置行列式 D T D^T DT中 ①⑥⑧⑨ ①⑥⑧⑨ ①⑥⑧⑨项的行标排列为 1423 1423 1423,列为4级标准排列 1234 1234 1234,所以为该项使用第二种定义展开: ( − 1 ) N ( 1432 ) 1 × 6 × 8 × 9 (-1)^{N(1432)}1×6×8×9 (−1)N(1432)1×6×8×9。
不难发现,行列式 D D D和其转置行列式 D T D^T DT中的 ①⑥⑧⑨ ①⑥⑧⑨ ①⑥⑧⑨项的值相同,可以推出,其他各项值也会完全相同,故 D T = D D^T=D DT=D。
2.2 性质2
行列式两行互换,值变号。
举例(交换行列式 D 1 D_1 D1中的1、3行变成行列式 D 2 D_2 D2):
D 1 = ∣ 1 ② 3 4 5 6 ⑦ 8 9 10 11 ⑫ ⑬ 14 15 16 ∣ D_1=\begin{vmatrix} 1&②&3&4\\ 5&6&⑦&8\\ 9&10&11&⑫\\ ⑬&14&15&16\\ \end{vmatrix} D1=
159⑬②610143⑦111548⑫16
行列式 D 1 D_1 D1中 ②⑦⑫⑬ ②⑦⑫⑬ ②⑦⑫⑬项的行标排列为4级标准排列 1234 1234 1234,列标为 2341 2341 2341,所以为该项使用第一种定义展开: ( − 1 ) N ( 2341 ) 2 × 7 × 12 × 13 (-1)^{N(2341)}2×7×12×13 (−1)N(2341)2×7×12×13。
D 2 = ∣ 9 10 11 ⑫ 5 6 ⑦ 8 1 ② 3 4 ⑬ 14 15 16 ∣ D_2=\begin{vmatrix} 9&10&11&⑫\\ 5&6&⑦&8\\ 1&②&3&4\\ ⑬&14&15&16\\ \end{vmatrix} D2= 951⑬106②1411⑦315⑫8416
行列式 D 2 D_2 D2中 ②⑦⑫⑬ ②⑦⑫⑬ ②⑦⑫⑬项的行标排列为 3214 3214 3214,列标排列为 2341 2341 2341,所以为该项使用第三种定义展开: ( − 1 ) N ( 3214 ) + N ( 2341 ) 2 × 7 × 12 × 13 (-1)^{N(3214)+N(2341)}2×7×12×13 (−1)N(3214)+N(2341)2×7×12×13。
不难发现,行列式 D 1 D_1 D1和行列式 D 2 D_2 D2对于 ②⑦⑫⑬ ②⑦⑫⑬ ②⑦⑫⑬项差一个 ( − 1 ) N ( 3214 ) (-1)^{N(3214)} (−1)N(3214)因数,而 N ( 3214 ) = 2 + 1 + 0 + 0 = 3 N(3214)=2+1+0+0=3 N(3214)=2+1+0+0=3是一个奇排列,故该项相差一个负号,同理可以推出,其他各项也相差一个负号,所以 D 1 = − D 2 D_1=-D_2 D1=−D2