5.1 行列式的性质

一、行列式概述

方阵的行列式(determinant)是一个数字,这个数字包含了这个矩阵的大量信息,它可以立即告诉我们这个矩阵是否可逆。当行列式为零时,矩阵不可逆。如果 A A A 是可逆矩阵,则 A − 1 A^{-1} A1 的行列式是 1 / ( det ⁡ A ) 1/(\det A) 1/(detA)。如果 det ⁡ A = 2 \det A=2 detA=2,则 det ⁡ A − 1 = 1 2 \det A^{-1}=\displaystyle\frac{1}{2} detA1=21。实际上 A − 1 A^{-1} A1 中的每个元素都可以由行列式得到一个公式。
行列式的一个用途是 —— 求出逆矩阵、主元和 A − 1 b A^{-1}\boldsymbol b A1b 解的公式。对于大型矩阵,我们很少使用这些公式,因为用消元法会更快。一个 2 × 2 2\times2 2×2 的矩阵,元素分别是 a , b , c , d a,b,c,d a,b,c,d,它的逆矩阵 A − 1 A^{-1} A1 可以由行列式 a d − b c ad-bc adbc 得到,注意是除以行列式! A = [ a b c d ] 有逆矩阵 A − 1 = 1 a d − b c [ d − b − c a ] ( 5.1.1 ) A=\begin{bmatrix}a&b\\c&d\end{bmatrix}有逆矩阵\kern 5ptA^{-1}=\pmb{\frac{1}{ad-bc}}\begin{bmatrix}\kern 7ptd&-b\\-c&\kern 7pta\end{bmatrix}\kern 10pt(5.1.1) A=[acbd]有逆矩阵A1=adbc1[dcba](5.1.1)这两个矩阵相乘得到 I I I。当行列式 a d − b c = 0 ad-bc=0 adbc=0 时,这时要除以零,由于除数不能为零,所以这时 A A A 没有逆矩阵。(当 a c = b d \displaystyle\frac{a}{c}=\frac{b}{d} ca=db 时,矩阵的两行是平行的,也会得到 a d = b c ad=bc ad=bc det ⁡ A = 0 \det A=0 detA=0.)相关行一定会得到 det ⁡ A = 0 \det A=0 detA=0
行列式也和主元有关联,对于 2 × 2 2\times2 2×2 的矩阵的主元是 a a a d − c a b d-\displaystyle\frac{c}{a}b dacb主元的乘积就是行列式 主元的乘积 a ( d − c a b ) = a d − b c 就是 det ⁡ A \pmb{主元的乘积}\kern 20pta\Big(d-\frac{c}{a}b\Big)=ad-bc\kern 5pt\pmb{就是}\kern 5pt\det A 主元的乘积a(dacb)=adbc就是detA一次行交换后主元变成了 c c c b − a c d b-\displaystyle\frac{a}{c}d bcad,这两个新的主元相乘得到 b c − a d bc-ad bcad。矩阵进行行交换后 [ c d a b ] \begin{bmatrix}c&d\\a&b\end{bmatrix} [cadb] 会使转行列式的符号反转。 n × n   的矩阵的行列式可以由三种方法得到 : n\times n\,的矩阵的行列式可以由三种方法得到: n×n的矩阵的行列式可以由三种方法得到:

  1. n n n 个主元相乘(乘 1 1 1 − 1 -1 1 \kern 49pt 这是主元公式(pivot formula)
  2. n ! n! n! 个项相加(乘 1 1 1 − 1 -1 1 \kern 44pt 这是大公式(big formula)
  3. 组合 n n n 个小一些的行列式(乘 1 1 1 − 1 -1 1 \kern 5pt 这是代数余子式公式(cofactor formula)

从上面可以看到正号或负号 —— 最终要在 1 1 1 − 1 -1 1 之间做决定 —— 这是行列式中很重大的一部分。它来自于下面的 n × n n\times n n×n 矩阵的行列式规则: 当矩阵的两行 ( 或两列 ) 交换后,行列式的符号会改变。 \pmb{当矩阵的两行(或两列)交换后,行列式的符号会改变。} 当矩阵的两行(或两列)交换后,行列式的符号会改变。单位矩阵的行列式是 + 1 +1 +1,交换两行后有 det ⁡ P = − 1 \det P=-1 detP=1,再交换两行后得到新的置换矩阵有 det ⁡ A = + 1 \det A=+1 detA=+1。有一半的置换矩阵是交换偶数次( det ⁡ P = 1 \det P=1 detP=1),另一半的置换矩阵是交换奇数次( det ⁡ P = − 1 \det P=-1 detP=1)。 2 × 2 2\times2 2×2 的情形, a d ad ad 的符号是正, b c bc bc 的符号是负,行交换后,它们的符号会改变: det ⁡ [ 1 0 0 1 ] , det ⁡ [ 0 1 1 0 ] = − 1 \det\begin{bmatrix}1&0\\0&1\end{bmatrix},\kern 5pt\det\begin{bmatrix}0&1\\1&0\end{bmatrix}=-1 det[1001],det[0110]=1另外一个重要的法则是线性,但是先给出一个警告:线性并不是说 det ⁡ ( A + B ) = det ⁡ A + det ⁡ B \det(A+B)=\det A+\det B det(A+B)=detA+detB这个绝对是错的! 这种线性甚至是当 A = I A=I A=I B = I B=I B=I 时都不成立。错误的规则是 det ⁡ ( I + I ) = 1 + 1 = 2 \det(I+I)=1+1=2 det(I+I)=1+1=2,正确的规则是 det ⁡ 2 I = 2 n \det 2I=2^n det2I=2n。当矩阵乘上 2 2 2 时,它的行列式需要乘上 2 n 2^n 2n(不仅是 2 2 2)。
我们不用公式定义行列式,我们从它的性质开始 —— 符号反转和线性。首先是性质,然后是公式,最后是应用,包含以下三种:

  1. 用行列式得到 A − 1 A^{-1} A1 A − 1 b A^{-1}\boldsymbol b A1b(这个公式称为克拉默法则Cramer’s Rule)
  2. 当盒子的边是 A A A 的行时,体积就是 ∣ det ⁡ A ∣ |\det A| detA
  3. 存在 n n n 个特殊数字 λ \lambda λ,称为特征值(eigenvalues), A − λ I A-\lambda I AλI 的行列式是零。这是一个非常重要的应用。

二、行列式的性质

行列式有三个基本的性质(规则 1 , 2 , 3 1,2,3 1,2,3),使用这些规则我们可以计算任意方阵 A A A 的行列式。行列式可以写成两种形式, det ⁡ A \det A detA ∣ A ∣ |A| A。注意:中括号表示的是矩阵,直线表示的是行列式。如果 A A A 2 × 2 2\times2 2×2 的矩阵,通过规则 1 , 2 , 3 1,2,3 1,2,3 我们可以得到答案: [ a b c d ] 的行列式是 ∣ a b c d ∣ = a d − b c \begin{bmatrix}a&b\\c&d\end{bmatrix}的行列式是\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc [acbd]的行列式是 acbd =adbc通过规则 1 − 3 1-3 13 我们可以得到规则 4 − 10 4-10 410,最后两个规则是 det ⁡ ( A B ) = ( det ⁡ A ) ( det ⁡ B ) \det(AB)=(\det A)(\det B) det(AB)=(detA)(detB) det ⁡ A T = det ⁡ A \det A^T=\det A detAT=detA。我们会使用 2 × 2 2\times2 2×2 矩阵来检验这些规则,需要记住的是:这些规则适用于所有的 n × n n\times n n×n 的矩阵 A A A
规则 1 1 1(最简单的), det ⁡ I = 1 \det I=1 detI=1 与体积 = 1 =1 =1 的单位立方体相匹配。
1 \kern 5pt n × n n\times n n×n 单位矩阵的行列式是 1 1 1 ∣ 1 0 0 1 ∣ = 1 , ∣ 1   ⋱ 1 ∣ = 1 \begin{vmatrix}1&0\\0&1\end{vmatrix}=1,\kern 15pt\begin{vmatrix}1&&\\\,&\ddots&\\&&1\end{vmatrix}=1 1001 =1, 11 =12 \kern 5pt 交换两行,行列式符号会改变(符号反转): 检验: ∣ c d a b ∣ = − ∣ a b c d ∣ ( 两边都等于 b c − a d ) 检验:\begin{vmatrix}c&d\\a&b\end{vmatrix}=-\begin{vmatrix}a&b\\c&d\end{vmatrix}\kern 10pt(两边都等于bc-ad) 检验: cadb = acbd (两边都等于bcad)由这个规则,我们可以求出任意置换矩阵的行列式 det ⁡ P \det P detP,只交换 I I I 的行,直到得到 P P P,若交换次数为偶数次,则有 det ⁡ P = + 1 \det P=+1 detP=+1;若交换此时为奇数次,则有 det ⁡ P = − 1 \det P=-1 detP=1
第三个规则对于所有矩阵的行列式来说是迈了一大步。

3 \kern 5pt 行列式对于每个行都是线性函数(其它行保持固定)。
如果 t t t 乘上第一行,则行列式也会被 t t t 乘。如果第一行相加,则行列式也相加。这个规则只有当其它行不变时才适用!注意 c c c d d d 是如何保持不变的:

任意数   t   乘行   1 t   乘行列式 ∣ t a t b c d ∣ = t ∣ a b c d ∣     A   的行   1   与   A ′   的行   1   相加: 它们的行列式相加 ∣ a + a ′ b + b ′ c d ∣ = ∣ a b c d ∣ + ∣ a ′ b ′ c d ∣ \begin{array}{cl}\begin{matrix}\pmb{任意数\,t\, 乘行\,1}\\\pmb{t\,乘行列式}\end{matrix}&{\color{blue}\begin{vmatrix}ta&tb\\c&d\end{vmatrix}=t\begin{vmatrix}a&b\\c&d\end{vmatrix}}~\\\,\\ \begin{matrix}\pmb{A\,的行\,1\,与\,A'\,的行\,1\,相加:}\\\pmb{它们的行列式相加}\end{matrix}&\color{blue}\begin{vmatrix}a+a'&b+b'\\c&d\end{vmatrix}=\begin{vmatrix}a&b\\c&d\end{vmatrix}+\begin{vmatrix}a'&b'\\c&d\end{vmatrix}\end{array} 任意数t乘行1t乘行列式A的行1A的行1相加:它们的行列式相加 tactbd =t acbd   a+acb+bd = acbd + acbd

第一种情形,两边都是 t a d − t b c tad-tbc tadtbc t t t 可以提出。第二种情形,两边都是 a d + a ′ d − b c − b ′ c ad+a'd-bc-b'c ad+adbcbc。这些规则同样适用于 n × n n\times n n×n 的矩阵 A A A,行交换也是一样。 A = ∣ 4 8 8 0 1 1 0 0 1 ∣ = 4 ∣ 1 2 2 0 1 1 0 0 1 ∣ , ∣ 4 8 8 0 1 1 0 0 1 ∣ = ∣ 4 0 0 0 1 1 0 0 1 ∣ + ∣ 0 8 8 0 1 1 0 0 1 ∣ A=\begin{vmatrix}\pmb4&\pmb8&\pmb8\\0&1&1\\0&0&1\end{vmatrix}=\pmb4\begin{vmatrix}\pmb1&\pmb2&\pmb2\\0&1&1\\0&0&1\end{vmatrix},\kern 20pt\begin{vmatrix}\pmb4&\pmb8&\pmb8\\0&1&1\\0&0&1\end{vmatrix}=\begin{vmatrix}\pmb4&\pmb0&\pmb0\\0&1&1\\0&0&1\end{vmatrix}+\begin{vmatrix}\pmb0&\pmb8&\pmb8\\0&1&1\\0&0&1\end{vmatrix} A= 400810811 =4 100210211 , 400810811 = 400010011 + 000810811 规则 3 3 3 并没有说明这些行列式是多少( det ⁡ A \det A detA 4 4 4)。
乘法和加法的组合,可以得到一行的任意线性组合,规则 2 2 2 可以将这一行放在第一行,然后在交换回去。
这个规则并不是说 det ⁡ 2 I = 2 det ⁡ I \det 2I=2\det I det2I=2detI,要得到 2 I 2I 2I,我们需要将每一行都乘上 2 2 2,因子 2 2 2 要提出来两次: ∣ 2 0 0 2 ∣ = 2 2 = 4 , ∣ t 0 0 t ∣ = t 2 \begin{vmatrix}2&0\\0&2\end{vmatrix}=2^2=4,\kern 20pt\begin{vmatrix}t&0\\0&t\end{vmatrix}=t^2 2002 =22=4, t00t =t2这个就像面积和体积,将一个矩形扩展为原来的 2 2 2 被,它的面积会变为原来的 4 4 4 倍。将一个 n n n 维的盒子扩展为原来的 n n n 倍,它的体积将会变为原来的 t n t^n tn 倍。这个联系并不是偶然 —— 行列式是等于体积的。
注意这三个特殊的规则 1 − 3 1-3 13,它们可以完全决定 det ⁡ A \det A detA 这个数。我们可以通过它们来得到 n × n n\times n n×n 行列式的公式,会比较复杂。后面规则 4 − 10 4-10 410 也可以通过这三个规则得到,使用这些规则可以让行列式的计算更简单。

4 \kern 5pt 如果 A A A 有两行相等,则 det ⁡ A = 0 \det A=0 detA=0 相等的行 检验   2 × 2   的行列式: ∣ a b a b ∣ = 0 \pmb{相等的行}\kern 15pt检验\,2\times2\,的行列式:\begin{vmatrix}a&b\\a&b\end{vmatrix}=0 相等的行检验2×2的行列式: aabb =0规则 4 4 4 是由规则 2 2 2 得来的(我们一定要使用这个规则,而不是用 2 × 2 2\times2 2×2 的公式)。交换两个相等的行后,行列式 D D D 要改变符号,但是 D D D 又一样,因为矩阵没有发生变化,则唯一满足 − D = D -D=D D=D 的数字就是 D = 0 D=0 D=0,这个行列式的值一定是 0 0 0。(注:这个理由在布尔代数中是不成立的,因为 − 1 = 1 -1=1 1=1,则 D D D 由规则 1 , 3 , 4 1,3,4 1,3,4 定义。)
有两个相等行的矩阵是没有逆矩阵的,由规则 4 4 4 det ⁡ A = 0 \det A=0 detA=0,但是当矩阵没有相等行时,也可能是奇异的且行列式为零!规则 5 5 5 是关键,我们可以进行行运算(就像消元法一样)而不改变 det ⁡ A \det A detA

5 \kern 5pt 从另一行减去某一行的倍数, det ⁡ A \det A detA 不变 从行   2   减去   l   倍的行   1 ∣ a b c − l a d − l b ∣ = ∣ a b c d ∣ \pmb{从行\,2\,减去\,l\,倍的行\,1}\kern 20pt\color{blue}\begin{vmatrix}a&b \\c-la&d-lb\end{vmatrix}=\begin{vmatrix}a&b\\c&d\end{vmatrix} 从行2减去l倍的行1 aclabdlb = acbd 使用规则 3 3 3(线性)将左侧分成右侧加上另一项 − l ∣ a b a b ∣ -l\begin{vmatrix}a&b\\a&b\end{vmatrix} l aabb ,由规则 4 4 4 可得额外的一项是零:它有两行相等。因此规则 5 5 5 是正确的(不仅适用于 2 × 2 2\times2 2×2)。
结论: 正常执行从 A A A U U U 的消元步骤不会改变行列式,因此 det ⁡ A \det A detA 等于 det ⁡ U \det U detU。如果得到了三角矩阵 U U U 的行列式,也就得到了所有矩阵 A A A 的行列式。每一次行交换都会改变符号,因此有 det ⁡ = ± det ⁡ U \det=±\det U det=±detU。规则 5 5 5 将这个问题缩小至了三角矩阵。

6 \kern 5pt 如果矩阵 A A A 有一行全为零,则 det ⁡ A = 0 \det A=0 detA=0 零行 ∣ 0 0 c d ∣ = 0 , ∣ a b 0 0 ∣ = 0 \pmb{零行}\kern 25pt\begin{vmatrix}0&0\\c&d\end{vmatrix}=0,\kern 15pt\begin{vmatrix}a&b\\0&0\end{vmatrix}=0 零行 0c0d =0, a0b0 =0简单证明:将其它行加到零行,行列式不变(规则 5 5 5),但是由于矩阵有两个相等的行,所以由规则 4 4 4 可知 det ⁡ A = 0 \det A=0 detA=0

7 \kern 5pt 如果 A A A 是三角形矩阵,则 det ⁡ A = a 11 a 22 ⋯ a n n = \det A=a_{11}a_{22}\cdots a_{nn}= detA=a11a22ann= 对角元素的乘积 三角形 ∣ a b 0 d ∣ = a d , ∣ a 0 c d ∣ = a d \pmb{三角形}\kern 20pt\begin{vmatrix}a&b\\0&d\end{vmatrix}=ad,\kern 15pt\begin{vmatrix}a&0\\c&d\end{vmatrix}=ad 三角形 a0bd =ad, ac0d =ad假设所有的对角元素都是非零值,我们可以通过消元法将非对角元素的值都变为零!(如果 A A A 是下三角矩阵,下面的行减去它上面每行的乘数倍;如果 A A A 是上三角矩阵,从上面行减去它下面每行的乘数倍。)由规则 5 5 5 我们知道消元过程中行列式保持不变 —— 现在的矩阵是个对角矩阵: 对角矩阵 det ⁡ [ a 11 0 a 22 ⋱ 0 a n n ] = ( a 11 ) ( a 22 ) ⋯ ( a n n ) \pmb{对角矩阵}\kern 20pt\det\begin{bmatrix}a_{11}&&&0\\&a_{22}&\\&&\ddots&\\0&&&a_{nn}\end{bmatrix}=(a_{11})(a_{22})\cdots(a_{nn}) 对角矩阵det a110a220ann =(a11)(a22)(ann)因数 a 11 a_{11} a11可以通过规则 3 3 3 从第一行提出来,然后将 a 22 a_{22} a22 从第二行提出来,最终将 a n n a_{nn} ann 从第最后一行提取出来。行列式就是 a 11 a_{11} a11 a 22 a_{22} a22 ⋯ \cdots a n n a_{nn} ann det ⁡ I \det I detI,最后使用规则 1 1 1 det ⁡ I = 1 \det I=1 detI=1 得到三角矩阵的行列式是它对角元素之积。
如果有一个对角元素 a i i = 0 a_{ii}=0 aii=0 会怎样呢?此时三角矩阵 A A A 是奇异的,使用消元法可以得到零行。由规则 5 5 5 行列式不变的性质以及规则 6 6 6 有零行的矩阵行列式 det ⁡ A = 0 \det A=0 detA=0,我们得到了一个测试矩阵是奇异还是可逆的很棒的方法。

8 \kern 5pt 如果 A A A 奇异则 det ⁡ A = 0 \det A=0 detA=0,如果 A A A 可逆则 det ⁡ A ≠ 0 \det A\neq0 detA=0 奇异 [ a b c d ] 奇异当且仅当 a d − b c = 0 \pmb{奇异}\kern 25pt\begin{bmatrix}a&b\\c&d\end{bmatrix}奇异当且仅当\kern 3ptad-bc=0 奇异[acbd]奇异当且仅当adbc=0证明: 通过消元法将 A A A 变成 U U U。如果 A A A 是奇异的,则 U U U 至少有一个零行,则由规则 5 5 5 和规则 6 6 6 det ⁡ A = det ⁡ U = 0 \det A=\det U=0 detA=detU=0。如果 A A A 是可逆的,则 U U U 的主元都在对角线上,由规则 7 7 7 知这些非零主元的乘积就得到一个非零的行列式:

主元相乘 det ⁡ A = ± det ⁡ U = ± ( 主元的乘积 ) ( 5.1.2 ) \pmb{主元相乘}\kern 50pt{\color{blue}\det A=±\det U=±(主元的乘积)}\kern 30pt(5.1.2) 主元相乘detA=±detU=±(主元的乘积)(5.1.2)

2 × 2 2\times2 2×2 矩阵的主元(如果 a ≠ 0 a\neq0 a=0)是 a a a d − ( c a ) b d-\displaystyle\Big(\frac{c}{a}\Big)b d(ac)b 行列式是 ∣ a b c d ∣ = ∣ a b 0 d − ( c a ) b ∣ = a d − b c \pmb{行列式是}\kern 20pt\begin{vmatrix}a&b\\c&d\end{vmatrix}=\begin{vmatrix}a&b\\0&d-\displaystyle\Big(\frac{c}{a}\Big)b\end{vmatrix}=ad-bc 行列式是 acbd = a0bd(ac)b =adbc这是行列式的第一个公式。MATLAB 是使用主元的乘积来求 det ⁡ A \det A detA 的。 ± det ⁡ U ±\det U ±detU 中的符号是由行交换的次数是奇数次还是偶数次决定的: + 1 +1 +1 − 1 -1 1 是用于行交换的置换矩阵的行列式:
没有行交换, P = I P=I P=I det ⁡ A = det ⁡ U = 主元的乘积 \det A=\det U=主元的乘积 detA=detU=主元的乘积,且 det ⁡ L = 1 \det L=1 detL=1 如果   P A = L U ,则   det ⁡ P det ⁡ A = det ⁡ L det ⁡ U , det ⁡ A = ± det ⁡ U ( 5.1.3 ) 如果\,PA=LU,则\,\det P\det A=\det L\det U,\kern 2pt\det A=±\det U\kern 20pt(5.1.3) 如果PA=LU,则detPdetA=detLdetUdetA=±detU(5.1.3)

9 \kern 5pt A B AB AB 的行列式是 det ⁡ A \det A detA det ⁡ B \det B detB ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B
乘积规则 ∣ a b c d ∣ ∣ p q r s ∣ = ∣ a p + b r a q + b s c p + d r c q + d s ∣ \pmb{乘积规则}\kern 20pt\begin{vmatrix}a&b\\c&d\end{vmatrix}\begin{vmatrix}p&q\\r&s\end{vmatrix}=\begin{vmatrix}ap+br&aq+bs\\cp+dr&cq+ds\end{vmatrix} 乘积规则 acbd prqs = ap+brcp+draq+bscq+ds 当矩阵 B B B A − 1 A^{-1} A1 时,这个规则就说明 A − 1 A^{-1} A1 的行列式是 1 / det ⁡ A 1/\det A 1/detA

A   乘   A − 1 A A − 1 = I 所以 ( det ⁡ A ) ( det ⁡ A − 1 ) = det ⁡ I = 1 A\,乘\,A^{-1}\kern 20pt\color{blue}AA^{-1}=I\kern 5pt所以\kern 5pt(\det A)(\det A^{-1})=\det I=1 AA1AA1=I所以(detA)(detA1)=detI=1

这个乘积规则是目前为止最复杂的,甚至于 2 × 2 2\times2 2×2 的情况下也需要一些代数运算: ∣ A ∣ ∣ B ∣ = ( a d − b c ) ( p s − q r ) = ( a p + b r ) ( c q + d s ) − ( a q + b s ) ( c p + d r ) = ∣ A B ∣ |A||B|=(ad-bc)(ps-qr)=(ap+br)(cq+ds)-(aq+bs)(cp+dr)=|AB| A∣∣B=(adbc)(psqr)=(ap+br)(cq+ds)(aq+bs)(cp+dr)=AB对于 n × n n\times n n×n 的情况,有一个简洁的证明 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B 的方法。当 ∣ B ∣ |B| B 不是零时,考虑比值 D ( A ) = ∣ A B ∣ / ∣ B ∣ D(A)=|AB|/|B| D(A)=AB∣/∣B,检验比值 D ( A ) D(A) D(A) 是否有性质 1 , 2 , 3 1,2,3 1,2,3 D ( A ) D(A) D(A) 一定是行列式且有 ∣ A B ∣ / ∣ B ∣ = ∣ A ∣ |AB|/|B|=|A| AB∣/∣B=A
性质1 I I I 的行列式)如果 A = I A=I A=I,则比值 D ( A ) D(A) D(A) 就变为 ∣ B ∣ / ∣ B ∣ = 1 |B|/|B|=1 B∣/∣B=1
性质2 (符号反转)当交换 A A A 的两个行后, A B AB AB 的两个行也会被交换。因此 ∣ A B ∣ |AB| AB 改变符号,比值 ∣ A B ∣ / ∣ B ∣ |AB|/|B| AB∣/∣B 也改变符号。
性质3 (线性)当 t t t 乘上 A A A 的行 1 1 1 后,也会有 t t t 乘上 A B AB AB 的行 1 1 1,行列式就会变成 t t t A B AB AB,所以有比值 ∣ A B ∣ / ∣ B ∣ |AB|/|B| AB∣/∣B t t t 乘。
\kern 30pt A A A 的行 1 1 1 加到 A ′ A' A 的行 1 1 1 上,则 A B AB AB 的行 1 1 1 加到 A ′ B A'B AB 的行 1 1 1。由规则 3 3 3 得,行列式也会相加 ∣ A B ∣ + ∣ A ′ B ∣ |AB|+|A'B| AB+AB,除以 ∣ B ∣ |B| B 后,比值也相加。
结论: 比值 ∣ A B ∣ / ∣ B ∣ |AB|/|B| AB∣/∣B 与定义的 ∣ A ∣ |A| A 3 3 3 个相同的性质,所以它等于 ∣ A ∣ |A| A。这样就证明了 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B。若是 ∣ B ∣ = 0 |B|=0 B=0 的情形,由于 B B B 奇异可得 A B AB AB 是奇异的,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ = 0 |AB|=|A||B|=0 AB=A∣∣B=0

10 A \kern 5ptA A 和它的转置 A T A^T AT有相同的行列式 转置 ∣ a b c d ∣ = ∣ a c b d ∣ 两边都等于 a d − b c \pmb{转置}\kern 5pt\begin{vmatrix}a&b\\c&d\end{vmatrix}=\begin{vmatrix}a&c\\b&d\end{vmatrix}\kern 10pt两边都等于\kern 5ptad-bc 转置 acbd = abcd 两边都等于adbc A A A 是奇异矩阵时( A T A^T AT 也是奇异矩阵),上述方程 ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A 就变成了 0 = 0 0=0 0=0;当 A A A 不是奇异矩阵时, A A A 可以进行分解 P A = L U PA=LU PA=LU,两边同时转置 A T P T = U T L T A^TP^T=U^TL^T ATPT=UTLT,下面利用规则 9 9 9 来证明 ∣ A ∣ = ∣ A T ∣ |A|=|A^T| A=AT 比较 det ⁡ P det ⁡ A = det ⁡ L det ⁡ U 和 det ⁡ A T det ⁡ P T = det ⁡ U T det ⁡ L T 比较\kern 10pt\det P\det A=\det L\det U\kern 10pt和\kern 10pt\det A^T\det P^T=\det U^T\det L^T 比较detPdetA=detLdetUdetATdetPT=detUTdetLT首先, det ⁡ L = det ⁡ L T = 1 \det L=\det L^T=1 detL=detLT=1,这是因为它们的对角线元素都是 1 1 1;其次, det ⁡ U = det ⁡ U T \det U=\det U^T detU=detUT,因为三角矩阵转置后对角线元素相同;最后, det ⁡ P = det ⁡ P T \det P=\det P^T detP=detPT,因为 P P P 是置换矩阵,则有 P T P = I P^TP=I PTP=I,所以由规则 9 9 9 ∣ P T ∣ ∣ P ∣ = 1 |P^T||P|=1 PT∣∣P=1,又因为 ∣ P ∣ |P| P ∣ P T ∣ |P^T| PT 要么等于 1 1 1 要么等于 − 1 -1 1,所以有 ∣ P ∣ = ∣ P T ∣ |P|=|P^T| P=PT。所以, L , U , P L,U,P L,U,P L T , U T , P T L^T,U^T,P^T LT,UT,PT 的行列式相同,可得 det ⁡ A = det ⁡ A T \det A=\det A^T detA=detAT

关于列的重要注释: 每一条对行的规则也适用于列(只需要进行转置,因为 ∣ A ∣ = ∣ A T ∣ |A|=|A^T| A=AT)。如果交换两列,则行列式也会改变符号。零列或有两个相等的列都会使得行列式为零。如果使用 t t t 乘上某一列,则行列式也会乘 t t t。行列式对于单个列是线性函数。

三、主要内容总结

  1. 行列式由前三个性质定义: det ⁡ I = 1 \det I=1 detI=1,符号反转和每行的线性。
  2. 消元后 det ⁡ A = ± ( 主元的乘积 ) \det A=±(主元的乘积) detA=±(主元的乘积)
  3. 当且仅当 A A A 不可逆时,行列式为零。
  4. 两个重要性质: det ⁡ A B = ( det ⁡ A ) ( det ⁡ B ) \det AB=(\det A)(\det B) detAB=(detA)(detB) det ⁡ A T = det ⁡ A \det A^T=\det A detAT=detA

四、例题

例1】对于矩阵 A A A 进行以下运算,求出 M 1 , M 2 , M 3 M_1,M_2,M_3 M1,M2,M3 的行列式:
M 1 M_1 M1:用 ( − 1 ) i + j (-1)^{i+j} (1)i+j 乘上每个 a i j a_{ij} aij,得到棋盘式的符号模式。
M 2 M_2 M2:从 A A A 的行 1 , 2 , 3 1,2,3 1,2,3 减去它的行 3 , 1 , 2 3,1,2 3,1,2
M 3 M_3 M3 A A A 的行 1 , 2 , 3 1,2,3 1,2,3 加上它的行 3 , 1 , 2 3,1,2 3,1,2
M 1 , M 2 , M 3 M_1,M_2,M_3 M1,M2,M3 的行列式和 A A A 的行列式有什么关系? [ a 11 − a 12 a 13 − a 21 a 22 − a 23 a 31 − a 32 a 33 ] [ row   1 − row   3 row   2 − row   1 row   3 − row   2 ] [ row   1 + row   3 row   2 + row   1 row   3 + row   2 ] \begin{bmatrix}\kern 7pta_{11}&-a_{12}&\kern 7pta_{13}\\-a_{21}&\kern 7pta_{22}&-a_{23}\\\kern 7pta_{31}&-a_{32}&\kern 7pta_{33}\end{bmatrix}\kern 20pt\begin{bmatrix}\textrm{row\,1}- \textrm{row}\,3\\\textrm{row}\,2-\textrm{row}\,1\\\textrm{row}\,3-\textrm{row}\,2\end{bmatrix}\kern 20pt\begin{bmatrix}\textrm{row}\,1+\textrm{row}\,3\\\textrm{row}\,2+\textrm{row}\,1\\\textrm{row}\,3+\textrm{row}\,2\end{bmatrix} a11a21a31a12a22a32a13a23a33 row1row3row2row1row3row2 row1+row3row2+row1row3+row2

解: 这三个行列式的值分别是 det ⁡ A , 0 , 2 det ⁡ A \det A,0,2\det A detA,0,2detA M 1 = [ 1 − 1 1 ] [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ 1 − 1 1 ] , 所以   det ⁡ M 1 = ( − 1 ) ( det ⁡ A ) ( − 1 ) = det ⁡ A M_1=\begin{bmatrix}1&&\\&-1&\\&&1\end{bmatrix}\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}\begin{bmatrix}1&&\\&-1&\\&&1\end{bmatrix},\kern 10pt所以\,\det M_1=(-1)(\det A)(-1)=\det A M1= 111 a11a21a31a12a22a32a13a23a33 111 ,所以detM1=(1)(detA)(1)=detA M 2 M_2 M2 是奇异矩阵,因为它的行加起来是零行,所以行列式为零。
M 3 M_3 M3 的行列式可以由规则 3 3 3(每行的线性)分成 8 8 8 个行列式之和: ∣ row   1 + row   3 row   2 + row   1 row   3 + row   2 ∣ = ∣ row   1 row   2 row   3 ∣ + ∣ row   3 row   2 row   3 ∣ + ∣ row   1 row   1 row   3 ∣ + ∣ row   3 row   1 row   3 ∣ + ∣ row   1 row   2 row   2 ∣ + ∣ row   3 row   2 row   2 ∣ + ∣ row   1 row   1 row   2 ∣ + ∣ row   3 row   1 row   2 ∣ \begin{vmatrix}\textrm{row}\,1+\textrm{row}\,3\\\textrm{row}\,2+\textrm{row}\,1\\\textrm{row}\,3+\textrm{row}\,2\end{vmatrix}=\begin{vmatrix}\textrm{row}\,1\\\textrm{row}\,2\\\textrm{row}\,3\end{vmatrix}+\begin{vmatrix}\textrm{row}\,3\\\textrm{row}\,2\\\textrm{row}\,3\end{vmatrix}+\begin{vmatrix}\textrm{row}\,1\\\textrm{row}\,1\\\textrm{row}\,3\end{vmatrix}+\begin{vmatrix}\textrm{row}\,3\\\textrm{row}\,1\\\textrm{row}\,3\end{vmatrix}+\begin{vmatrix}\textrm{row}\,1\\\textrm{row}\,2\\\textrm{row}\,2\end{vmatrix}+\begin{vmatrix}\textrm{row}\,3\\\textrm{row}\,2\\\textrm{row}\,2\end{vmatrix}+\begin{vmatrix}\textrm{row}\,1\\\textrm{row}\,1\\\textrm{row}\,2\end{vmatrix}+\begin{vmatrix}\textrm{row}\,3\\\textrm{row}\,1\\\textrm{row}\,2\end{vmatrix} row1+row3row2+row1row3+row2 = row1row2row3 + row3row2row3 + row1row1row3 + row3row1row3 + row1row2row2 + row3row2row2 + row1row1row2 + row3row1row2 除了第一个和最后一个,其余的行都有重复的行,它们的行列式是零,第一个就是 det ⁡ A \det A detA,最后一个需要对 A A A 进行两次行交换,所以 det ⁡ M 3 = det ⁡ A + det ⁡ A = 2 det ⁡ A \det M_3=\det A+\det A=2\det A detM3=detA+detA=2detA

例2】解释如何通过运算得到下面的行列式: det ⁡ [ 1 − a 1 1 1 1 − a 1 1 1 1 − a ] = a 2 ( 3 − a ) ( 5.1.4 ) \det\begin{bmatrix}1-a&1&1\\1&1-a&1\\1&1&1-a\end{bmatrix}=a^2(3-a)\kern 30pt(5.1.4) det 1a1111a1111a =a2(3a)(5.1.4)解: 分别从行 1 1 1 和行 2 2 2 中减去行 3 3 3,得到 det ⁡ [ − a 0 a 0 − a a 1 1 1 − a ] \det\begin{bmatrix}-a&0&a\\0&-a&a\\1&1&1-a\end{bmatrix} det a010a1aa1a 然后将列 1 1 1 加到列 3 3 3,再将列 2 2 2 加到列 3 3 3,得到下面的一个下三角矩阵,对角元素是 − a , − a , ( 3 − a ) -a,-a,(3-a) a,a,(3a),所以 det ⁡ = ( − a ) ( − a ) ( 3 − a ) = a 2 ( 3 − a ) \det=(-a)(-a)(3-a)=a^2(3-a) det=(a)(a)(3a)=a2(3a) [ − a 0 0 0 − a 0 1 1 3 − a ] \begin{bmatrix}-a&0&0\\0&-a&0\\1&1&3-a\end{bmatrix} a010a1003a 如果 a = 0 a=0 a=0 a = 3 a=3 a=3 时,这个行列式是零。若 a = 0 a=0 a=0,会得到一个全 1 1 1 矩阵,肯定是奇异的;若 a = 3 a=3 a=3,每一行相加都等于零,也是奇异的。数字 0 0 0 3 3 3 是全 1 1 1 矩阵的特征值

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值