sklearn降维算法:PCA、LDA、MDS、流形学习Isomap

一、PCA降维(主成分分析)

PCA是最常用的无监督降维算法

其原理是寻找方差最大维度,只是最大化类间样本的方差
例如,已知存在数据点如下图
PCA算法寻找方差最大维度

PCA案例:iris降维

%matplotlib inline

import matplotlib.pyplot as plt
from sklearn import decomposition
from sklearn import datasets

iris = datasets.load_iris()  # 加载数据集
X = iris.data  # 获取特征数据集
y = iris.target  # 获取标签数据集

pca = decomposition.PCA(n_components=2) # n_components:目标维度,需要降维成n_compone
  • 6
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值