应用数理统计之概率论复习与补充

应用数理统计之概率论复习与补充

1 概率空间

1.1 样本空间与事件域

  设 E E E是一个随机试验:

∙ \bullet 基本事件 ω \omega ω E E E的每一个不能再分或无需再分的可能结果。
∙ \bullet 样本空间 Ω \Omega Ω :全体基本事件所组成的集合, Ω = { ω } \Omega=\left\{\omega\right\} Ω={ω}
∙ \bullet 事件域 F \mathcal{F} F :由 Ω \Omega Ω的一些子集为元素所组成的集合, F = { A } , A ⊆ Ω \mathcal{F}=\left\{A\right\}, A\subseteq\Omega F={A},AΩ,A称为随机事件。

1.2 概率

∙ \bullet 概率:定义在事件域 F \mathcal{F} F上的实函数。
P ( A ) : F → R P(A):\mathcal{F}\rightarrow \mathcal{R} P(A):FR
∙ \bullet 概率空间:( Ω , F , P \Omega,\mathcal{F},P Ω,F,P)

1.3 条件概率与事件的独立性

1.3.1 条件概率

  设 A A A B B B是两个随机事件,则称 P ( B ∣ A ) P(B|A) P(BA)为在 A A A已发生的条件下 B B B发生的条件概率,即 B B B A A A之下的条件概率。
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

1.3.1 三个重要公式

  设 B 1 , B 2 , ⋯ , B n B_1,B_2,\cdots ,B_n B1B2Bn两两互不相容。
∙ \bullet 乘法公式:
P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯   ) P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots )P(A_n|A_1A_2\cdots A_{n-1}) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2))P(AnA1A2An1)
∙ \bullet 全概率公式:
P ( A ) = ∑ n = 1 ∞ P ( B n ) P ( A ∣ B n ) P(A)=\sum_{n=1}^\infty P(B_n)P(A|B_n) P(A)=n=1P(Bn)P(ABn)
∙ \bullet 贝叶斯(Bayes)公式:
P ( B n ) P ( A ∣ B n ) = P ( A ∣ B n ) P ( B n ) ∑ j = 1 ∞ P ( A ∣ B j ) P ( B j ) P(B_n)P(A|B_n)=\frac{P(A|B_n)P(B_n)}{\sum_{j=1}^\infty P(A|B_j)P(B_j)} P(Bn)P(ABn)=j=1P(ABj)P(Bj)P(ABn)P(Bn)

1.3.2 事件的独立性

  设 A A A B B B是两个随机事件,若满足下式,则称 A A A B B B互相独立。
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

2 随机变量及其分布

2.1 随机变量和分布函数

∙ \bullet 随机变量:设( Ω , F , P \Omega,\mathcal{F},P Ω,F,P)是一个概率空间,而 X = X ( ω ) X=X(\omega) X=X(ω)是定义在 Ω \Omega Ω上的单值实函数,若对任一实数 x x x,基本事件的集合 { ω : X ( ω ) ≤ x } \left\{\omega:X(\omega)\leq x \right\} {ω:X(ω)x}都是一随机事件, 即 { ω : X ( ω ) ≤ x } ∈ F \left\{\omega:X(\omega)\leq x \right\}\in\mathcal{F} {ω:X(ω)x}F,则称 X = X ( ω ) X=X(\omega) X=X(ω)为一个随机变量。
∙ \bullet 分布函数 F ( x ) F(x) F(x)
F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(Xx)

2.2 一维随机变量的分布

2.2.1 离散型随机变量分布列与分布函数

∙ \bullet 分布列
P ( X = x i ) = P i P(X=x_i)=P_i P(X=xi)=Pi
∙ \bullet 分布函数
F ( x ) = ∑ x i ≤ x P i F(x)=\sum_{x_i\leq x }P_i F(x)=xixPi

2.2.1 常见离散型随机变量的分布

∙ \bullet 二项分布 B ( n , p ) , 0 < p < 1 B(n,p),0<p<1 B(n,p),0<p<1
P ( X = k ) = C n k P k ( 1 − p ) n − k , k = 0 , 1 , ⋯ n P(X=k)={C^k_n}P^k(1-p)^{n-k},k=0,1,\cdots n P(X=k)=CnkPk(1p)nk,k=0,1,n
∙ \bullet 0-1(伯努利,Bernoulli)分布 B ( 1 , p ) , 0 < p < 1 B(1,p),0<p<1 B(1,p),0<p<1
P ( X = x ) = P x ( 1 − p ) 1 − x , x = 0 , 1 P(X=x)=P^x(1-p)^{1-x},x=0,1 P(X=x)=Px(1p)1x,x=0,1
∙ \bullet 泊松(Poisson)分布 P ( λ ) , λ > 0 P(\lambda),\lambda>0 P(λ),λ>0
P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , ⋯ P(X=k)=\frac{\lambda ^k}{k!}e^{-\lambda},k=0,1,\cdots P(X=k)=k!λkeλ,k=0,1,

2.2.2 连续型随机变量密度函数与分布函数

  如果对于随机变量 X X X的分布函数 F ( x ) F(x) F(x)存在非负实函数 f ( x ) f(x) f(x),使得对于任意实数 x x x满足下式,则称 f ( x ) f(x) f(x) X X X的密度函数。
F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^{x}f(t)dt F(x)=xf(t)dt

2.2.1 常见连续型随机变量的分布

∙ \bullet 均匀分布 R [ a , b ] R[a,b] R[a,b]
f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , 其 他 f(x)=\begin{cases} \frac{1}{b-a},a\leq x\leq b\\ 0,其他 \end{cases} f(x)={ba1,axb0,
∙ \bullet 指数分布 E ( λ ) E(\lambda) E(λ)
f ( x ) = { λ e − λ x , x > 0 0 , 其 他 f(x)=\begin{cases} \lambda e^{-\lambda x},x>0\\ 0,其他 \end{cases} f(x)={λeλx,x>00,
∙ \bullet 正态分布 N ( μ , σ 2 ) , σ > 0 N(\mu,\sigma^2),\sigma>0 N(μ,σ2),σ>0
f ( x ) = 1 2 π σ e x p { − ( x − μ ) 2 2 σ 2 } , k = 0 , 1 , ⋯ f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},k=0,1,\cdots f(x)=2π σ1exp{2σ2(xμ)2},k=0,1,

2.3 二维随机变量的分布

2.3.1 联合分布函数和边缘分布函数

∙ \bullet 联合分布函数:设 ( X , Y ) (X,Y) (X,Y)是一个二维随机变量,则对于任意一对实数 ( x , y ) (x,y) (x,y),称下式为 ( X , Y ) (X,Y) (X,Y)的联合分布函数。
F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\left\{X\leq x,Y\leq y\right\} F(x,y)=P{Xx,Yy}
∙ \bullet 边缘分布函数:下式分别称为 ( X , Y ) (X,Y) (X,Y)关于 X X X Y Y Y的边缘分布函数。

F X = P ( X ≤ x ) = F ( x , + ∞ ) F Y = P ( Y ≤ y ) = F ( + ∞ , y ) F_X=P(X\leq x)=F(x,+\infty)\\ F_Y=P(Y\leq y)=F(+\infty,y) FX=P(Xx)=F(x,+)FY=P(Yy)=F(+,y)

2.3.2 联合分布律和边缘分布率

∙ \bullet 联合分布律:
P i j = P { X = x i , Y = y i } P_{ij}=P\left\{X=x_i,Y=y_i\right\} Pij=P{X=xi,Y=yi}
∙ \bullet 边缘分布律:
P ( X = x i ) = ∑ j P i j = P i ⋅ P ( Y = y j ) = ∑ i P i j = P ⋅ j P(X=x_i)=\sum_{j}P_{ij}=P_{i\cdot}\\ P(Y=y_j)=\sum_{i}P_{ij}=P_{\cdot j} P(X=xi)=jPij=PiP(Y=yj)=iPij=Pj

2.3.3 联合密度函数和边缘密度函数

∙ \bullet 联合密度函数: f ( x , y ) f(x,y) f(x,y)
∙ \bullet 边缘密度函数:
f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_X(x)=\int_{-\infty}^{\infty}f(x,y)dy\\ f_Y(y)=\int_{-\infty}^{\infty}f(x,y)dx fX(x)=f(x,y)dyfY(y)=f(x,y)dx

2.4 随机变量的独立性

( X , Y ) (X,Y) (X,Y)为二维随机变量,对任意实数 x x x y y y满足下式,则称 X , Y X,Y X,Y互相独立。
F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)
∙ \bullet 离散型
P i j = P i P j P_{ij}=P_iP_j Pij=PiPj
∙ \bullet 连续型
f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)

2.5 条件分布

2.5.1 离散型随机变量条件分布

∙ \bullet 条件分布律
P ( X = x i ∣ Y = y j ) = P i j P ⋅ j P(X=x_i|Y=y_j)=\frac{P_ij}{P_{\cdot j}} P(X=xiY=yj)=PjPij
∙ \bullet 条件分布函数
F ( x ∣ y j ) = ∑ x i ≤ x P i j P ⋅ j F(x|y_j)=\frac{\sum_{x_i\leq x}P_{ij}}{P_{\cdot j}} F(xyj)=PjxixPij

2.5.2 连续型随机变量条件分布

∙ \bullet 条件分布密度函数
f ( x ∣ y ) = f ( x , y ) f Y ( y ) f(x|y)=\frac{f(x,y)}{f_Y(y)} f(xy)=fY(y)f(x,y)
∙ \bullet 条件分布函数
F ( x ∣ y ) = ∫ − ∞ x f ( u , y ) d u f Y ( y ) F(x|y)=\frac{\int_{-\infty}^{x}f(u,y)du}{f_Y(y)} F(xy)=fY(y)xf(u,y)du

3 随机变量的数字特征

3.1 期望与方差

3.1.1 期望

∙ \bullet 离散:
E ( x ) = ∑ k = 1 ∞ x k p k E(x)=\sum_{k=1}^\infty x_kp_k E(x)=k=1xkpk
∙ \bullet 连续:
E ( x ) = ∫ − ∞ ∞ x f ( x ) d x E(x)=\int_{-\infty}^\infty xf(x)dx E(x)=xf(x)dx

3.1.2 方差

D X = E ( X − E X ) 2 = E X 2 − ( E X ) 2 DX=E(X-EX)^2=EX^2-(EX)^2 DX=E(XEX)2=EX2(EX)2

3.1.3 常用分布均值与方差

∙ \bullet 二项分布 B ( n , p ) B(n,p) B(n,p)
E X = n p D X = n p ( 1 − p ) EX=np\\ DX=np(1-p) EX=npDX=np(1p)
∙ \bullet 伯努利分布 B ( 1 , p ) B(1,p) B(1,p)
E X = p D X = p ( 1 − p ) EX=p\\ DX=p(1-p) EX=pDX=p(1p)
∙ \bullet 泊松分布 P ( λ ) P(\lambda) P(λ)
E X = λ D X = λ EX=\lambda\\ DX=\lambda EX=λDX=λ
∙ \bullet 均匀分布 R ( a , b ) R(a,b) R(a,b)
E X = a + b 2 D X = ( b − a ) 2 12 EX=\frac{a+b}{2}\\ DX=\frac{(b-a)^2}{12} EX=2a+bDX=12(ba)2
∙ \bullet 指数分布 E ( λ ) E(\lambda) E(λ)
E X = 1 λ D X = 1 λ 2 EX=\frac{1}{\lambda}\\ DX=\frac{1}{\lambda^2} EX=λ1DX=λ21
∙ \bullet 正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
E X = μ D X = σ 2 EX=\mu\\ DX=\sigma^2 EX=μDX=σ2

3.2 矩,协方差和相关系数

3.2.1 矩

∙ \bullet k k k阶原点矩: E X k EX^k EXk
∙ \bullet k k k阶中心矩: E ( X − E X ) k E(X-EX)^k E(XEX)k

3.2.2 协方差

C o v ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X E Y Cov(X,Y)=E[(X-EX)(Y-EY)]=E(XY)-EXEY Cov(X,Y)=E[(XEX)(YEY)]=E(XY)EXEY

3.2.2 (线性)相关系数

ρ ( X , Y ) = C o v ( X , Y ) D X D Y \rho(X,Y)=\frac{Cov(X,Y)}{DXDY} ρ(X,Y)=DXDYCov(X,Y)

3.3 条件数学期望

∙ \bullet 离散
E ( X ∣ Y = y ) = ∑ x P ( X = x ∣ Y = y ) E(X|Y=y)=\sum_xP(X=x|Y=y) E(XY=y)=xP(X=xY=y)
∙ \bullet 连续
E ( X ∣ Y = y ) = ∫ − ∞ ∞ x f X ∣ Y ( x ∣ y ) d x E(X|Y=y)=\int_{-\infty}^{\infty}xf_{X|Y}(x|y)dx E(XY=y)=xfXY(xy)dx

3.4 条件方差

V a r ( X ∣ Y ) = E [ ( X − E ( X ∣ Y ) ) 2 ∣ Y ] = E ( X 2 ∣ Y ) − [ E ( X ∣ Y ) ] 2 Var(X|Y)=E[(X-E(X|Y))^2|Y]=E(X^2|Y)-[E(X|Y)]^2 Var(XY)=E[(XE(XY))2Y]=E(X2Y)[E(XY)]2

4 特征函数

X X X为随机变量, t t t为实数,称下式为 X X X的特征函数。
ϕ X ( t ) = E ( e i t X ) \phi_X(t)=E(e^{itX}) ϕX(t)=E(eitX)
∙ \bullet 离散
ϕ X ( t ) = ∑ k e i t x k p k \phi_X(t)=\sum_ke^{itx_k}p_k ϕX(t)=keitxkpk
∙ \bullet 连续
ϕ X ( t ) = ∫ − ∞ + ∞ e i t X f ( x ) d x \phi_X(t)=\int_{-\infty}^{+\infty}e^{itX}f(x)dx ϕX(t)=+eitXf(x)dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西红柿爱喝水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值