样本方差的期望_【AP统计】期望E(X)与方差Var(X)

本文介绍了随机变量的期望和方差,它们是衡量随机变量集中趋势和分散性的关键指标。讨论了期望和方差的运算性质,包括离散型和连续型随机变量。此外,还探讨了抽样分布的重要性,并通过具体例子区分了Y=X+X与Z=2X的统计特性,揭示了随机变量的不同组合方式如何影响其期望和方差。
摘要由CSDN通过智能技术生成

2424933d157772a68a45c55101aac241.png

随机变量(Random Variable)X是一个映射,把随机试验的结果与实数建立起了一一对应的关系。而期望与方差是随机变量的两个重要的数字特这。

期望(Expectation, or expected value)是度量一个随机变量取值的集中位置或平均水平的最基本的数字特征;

方差(Variance)是表示随机变量取值的分散性的一个数字特征。 方差越大,说明随机变量的取值分布越不均匀,变化性越强;方差越小,说明随机变量的取值越趋近于均值,即期望值。

离散型随机变量

期望:

方差:

连续型随机变量:

期望:

方差:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值