神经网络相关概念

一、神经网络 

二、激活函数的性质

三、常见的激活函数

 四、前馈神经网络(全连接神经网络、多层感知机)


一、神经网络 

神经网络最早是作为一种主要的连接主义模型。其有3个主要特性:

1)信息表示是分布式的(非局部的);

2)记忆和知识是存储在单元之间的连接上;

3)通过逐渐改变单元之间的连接强度来学习新的知识。

引入误差反向传播来改进其学习能力之后,神经网络也越来越多地应用在各种机器学习任务上。

二、激活函数的性质

 连续并可导(允许少数点上不可导)的非线性函数。

可导的激活函数可以直接利用数值优化的方法来学习网络参数。

激活函数及其导函数要尽可能的简单

有利于提高网络计算效率。  

激活函数的导函数的值域要在一个合适的区间内

不能太大也不能太小,否则会影响训练的效率和稳定性。

单调递增

三、常见的激活函数

 

 

性质:

  • 饱和函数
  • Tanh函数是零中心化的,而logistic函数的输出恒大于0 

 

 

 

 

 

 四、前馈神经网络(全连接神经网络、多层感知机)

 各神经元分别属于不同的,层内无连接。

相邻两层之间的神经元全部两两连接

整个网络中无反馈,信号从输入层向输出层单向传播,可用一个有向无环图表示

 前馈神经网络通过下面公式进行信息传播。

前馈计算:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值