Optimal time allocation for dynamic-TDMA-based wireless powered communication networks
基于动态TDMA的无线通信网络的最佳时间分配
这里写目录标题
Abstract
在本文中,我们考虑一个具有混合接入点(HAP) 和一组具有能量收集功能的无线用户的无线通信网络。
假设HAP具有两个天线:一个用于在下行链路中传输无线能量,另一个用于在上行链路中接收无线信息。
在没有固定能源的情况下,用户首先必须从HAP广播的无线信号中收集能量,然后使用所收集的能量通过动态时分多址(D-TDMA)将其个人信息传输到HAP。
我们研究最佳时间分配,以在一个总时间常数的约束下最大化所提出系统的吞吐量。
formulated 吞吐量最大化问题被证明是凸优化问题。
通过使用凸优化技术,以封闭形式表达获得最佳时间分配策略。
我们表明,可以以线性复杂度获得最佳时间分配。
通过仿真可以看出,网络的总吞吐量随着用户数量的增加而增加。
通过仿真还表明,应将具有低SNR的用户安排为先发送。
Introduction
在诸如传感器网络和蜂窝网络的常规无线网络中,无线设备由可更换或可充电电池供电。 这些电池供电设备的工作时间通常受到限制。
尽管定期更换电池或为电池充电可能是一个可行的选择,但它可能不方便(对于具有成千上万个分布式传感器节点的传感器网络),危险(对于位于有毒环境中的设备)或什至不可能(对于在人体内部植入的医疗传感器 )。
在这种情况下,具有无限能量供应潜力的能量收集成为延长这些无线网络寿命的一种有前途的方法。
除了众所周知的能源,例如太阳能和风能之外,由于无线信号既携带能量又包含信息[1],因此现在环境无线电信号被视为一种新的可行的无线能量收集来源。
在[2]中,已经成功地实现了使两个设备能够使用环境无线电信号作为唯一电源进行通信的无线通信系统。 从无线电信号中收集能量也成功地在无源射频识别(RFID)系统和人体传感器网络中实现。
另外,由于天线和电路设计的进步,人们相信在不久的将来可以从无线电信号中获取更有效的无线能量。
由于上述原因,仅通过从周围无线电信号中收集的能量为无线设备供电的无线通信网络(WPCN)成为有前途的研究课题[3] – [4] [5] [6] [7] [ 8] [9]。
在[3]中,作者研究了频率选择性无线系统中信息速率和功率传输之间的折衷。
在[4]中,作者提出使用多个天线来实现新兴的自供电无线网络的同时无线信息和功率传输。
在[5]中,推导了信息解码和能量收集之间的最佳功率分配,以最大程度地减少中断概率。
然后,在[6]中,研究了同时进行信息和功率传输的实际接收机设计。
在[7]中研究了用于实现无线电力传输的架构和部署问题。
在[8]中,作者研究了如何通过平衡信道估计和无线电力传输之间的资源分配来提高能量波束成形效率。
这些前述工作主要集中于点对点无线通信。但是,无线传输本质上是多用户通信设置。
因此,在本文中,我们考虑具有混合接入点(HAP)和多个无线用户的无线通信网络。
假设HAP具有两根天线:一根专用于下行链路无线能量传输,另一根专用于上行链路无线信息接收。
这意味着HAP是全双工系统。
我们假设两个天线之间完全隔离,因此不会收到对上行链路信号的干扰。
具有能量收集功能的用户首先必须从HAP收集能量,然后使用所收集的能量通过动态时分多址(D-TDMA)将其个人信息传输到HAP。
在[9]中考虑了紧密相关的系统模型。
但是,在[9]中,HAP被限制为只有一个天线。因此,HAP无法同时进行下行链路能量传输和上行链路信息接收。
因此,文献[9]中研究的时间分配问题更简单,本文研究的问题更有趣且更具挑战性。
本文的主要贡献如下:
我们研究最佳时间分配,以在总时间常数的作用下最大化所提出系统的吞吐量。
我们严格证明所提出的吞吐量最大化问题是凸优化问题。
通过使用凸优化技术以封闭形式获得最佳时间分配解决方案。
为了方便计算,我们还提出了一种具有线性复杂度的简单算法来计算最佳时间分配。
通过仿真显示,尽管总时间约束相同,但网络的总吞吐量随用户数量的增加而增加。
我们还表明,应将具有低SNR的用户安排为先发送。
System Model
在本文中,我们考虑具有1个HAP和K个用户的无线通信网络 WPCN
假设HAP配备了2个天线:
- 用于下行链路无线能量传输。
- 用于接收来自用户的上行链路信息传输。
假定所有用户终端均配备一个单个天线。
如图1所示
HAP→用户i 下行链路信道的信道功率增益
g
i
g_{i}
gi
HAP←用户i 上行链路信道的信道功率增益
h
i
h_{i}
hi
为了便于说明,假定所有涉及的信道都是块衰落的[10],即,信道在由T表示的每个传输块期间保持恒定,但是可能从一个块改变为另一个。
还假定所有这些信道功率增益在HAP都是完全已知的。
在一个衰落块T上进行能量收集和信息传输的帧结构如图2所示。该帧的总持续时间为T
在每个块中,HAP均(使用其天线之一)(以恒定的发射功率
P
H
P_{H}
PH)(向所有用户)广播无线能量
所有用户都可以在无线功率传输之前获取无线功率。
因此,后面的用户可以收获更多的能量。
我们假设用户没有其他能源或电池来存储其收集的能量,因此必须将所有收集的能量用于框架的传输。
HAP使用动态TDMA结构来接收来自用户的上行链路信息传输
为了方便起见,我们假设用户i在时隙i内进行传输
用户i的上行链路传输时间
τ
i
,
∀
i
∈
{
1
,
⋯
,
K
}
\tau_{i}, \ \forall i \in \{1, \cdots, K\}
τi, ∀i∈{1,⋯,K}
用户i的能量收集时间
∑
j
=
0
i
−
1
τ
j
,
∀
i
∈
{
1
,
2
,
…
,
K
}
\sum\nolimits_{j=0}^{i-1} \tau_{j}, \ \forall i \in\{1,2, \ldots, K\}
∑j=0i−1τj, ∀i∈{1,2,…,K}
用户i从HAP收集的总能量(1)
E
i
=
η
i
∑
j
=
0
i
−
1
g
i
P
H
τ
j
,
∀
i
∈
{
1
,
2
,
⋯
,
K
}
E_{i}=\eta_{i}\sum\limits_{j=0}^{i-1} g_{i}P_{H}\tau_{j}, \ \forall i\in\{1,2, \cdots, K\}
Ei=ηij=0∑i−1giPHτj, ∀i∈{1,2,⋯,K}
用户i的能量收集效率
η
i
∈
(
0
,
1
)
\eta_{i}\in(0,1)
ηi∈(0,1)是一个常数
用户i在其传输时隙期间的平均传输功率
p
i
=
E
i
τ
i
,
∀
i
∈
{
1
,
2
,
⋯
,
K
}
p_{i}={E_{i}\over \tau_{i}}, \ \forall i\in\{1,2, \cdots, K\}
pi=τiEi, ∀i∈{1,2,⋯,K}
由于采用了TDMA,因此每个用户只能在其分配的时隙内进行发送,因此用户之间没有相互干扰。
此外,我们假设HAP配备了一个连续的干扰消除解码器
因此,来自下行链路能量信号的干扰可以首先被解码,然后从接收到的信号中减去
用户i的瞬时上行传输速率 为什么用ln ?
R
i
=
ln
(
1
+
h
i
E
i
τ
i
σ
2
)
,
∀
i
∈
{
1
,
2
,
⋯
,
K
}
R_{i}=\ln \left(1+{h_{i}E_{i}\over \tau_{i}\sigma^{2}}\right), \ \forall i\in \ \{1,2, \cdots, K\}
Ri=ln(1+τiσ2hiEi), ∀i∈ {1,2,⋯,K}
HAP处的噪声功率
σ
2
\sigma^{2}
σ2
τ
=
[
τ
0
,
…
,
τ
K
]
T
{\tau}=[\tau_{0}, \ \ldots, \ \tau_{K}]^{T}
τ=[τ0, …, τK]T
系统的总吞吐量=K个用户的上行链路传输时间
τ
i
\tau_{i}
τi
×
\times
×瞬时上行传输速率
R
i
R_{i}
Ri求和(4)
T
(
τ
)
=
∑
i
=
1
K
τ
i
R
i
=
∑
i
=
1
K
τ
i
ln
(
1
+
h
i
η
i
g
i
P
H
∑
j
=
0
i
−
1
τ
j
τ
i
σ
2
)
=
∑
i
=
1
K
τ
i
ln
(
1
+
γ
i
∑
j
=
0
i
−
1
τ
j
τ
i
)
=
τ
1
ln
(
1
+
γ
1
τ
0
τ
1
)
+
τ
2
ln
(
1
+
γ
2
(
τ
0
+
τ
1
)
τ
2
)
+
…
{T}({\tau})=\sum\limits_{i=1}^{K}\tau_{i} R_{i} \\ =\sum\limits_{i=1}^{K}\tau_{i}\ln \left(1+{h_{i}\eta_{i}g_{i}P_{H}\sum\nolimits_{j=0}^{i-1}\tau_{j}\over \tau_{i}\sigma^{2}}\right)\\ =\sum\limits_{i=1}^{K}\tau_{i} \ln \left(1+{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}\over \tau_{i}}\right)\\ =\tau_{1} \ln \left(1+{\gamma_{1}\tau_{0}\over \tau_{1}}\right) +\tau_{2} \ln \left(1+{\gamma_{2}(\tau_{0}+\tau_{1})\over \tau_{2}}\right)+…
T(τ)=i=1∑KτiRi=i=1∑Kτiln(1+τiσ2hiηigiPH∑j=0i−1τj)=i=1∑Kτiln(1+τiγi∑j=0i−1τj)=τ1ln(1+τ1γ1τ0)+τ2ln(1+τ2γ2(τ0+τ1))+…
和用户i的上行链路传输时间
τ
i
\tau_{i}
τi无关的 信噪比
γ
i
=
h
i
η
i
g
i
P
H
σ
2
,
∀
i
∈
{
1
,
2
,
⋯
,
K
}
\gamma_{i}={h_{i}\eta_{i}g_{i}P_{H}\over \sigma^{2}}, \ \forall i \in\{1,2, \cdots, K\}
γi=σ2hiηigiPH, ∀i∈{1,2,⋯,K}
Problem Formulation
在本文中,我们有兴趣寻找最佳时间分配策略
τ
=
[
τ
0
,
…
,
τ
K
]
T
{\tau}=[\tau_{0}, \ \ldots, \ \tau_{K}]^{T}
τ=[τ0, …, τK]T,以最大化一个衰落块T的所述WPCN 无线通信网络的总吞吐量
T
(
τ
)
{T}({\tau})
T(τ)
为了方便起见,我们使用归一化的单位块时间,即T = 1
Problem 1
问题1 吞吐量最大化问题
max
τ
T
(
τ
)
=
∑
i
=
1
K
τ
i
ln
(
1
+
γ
i
∑
j
=
0
i
−
1
τ
j
τ
i
)
\max\limits_{{\tau}} {T}({\tau})=\sum\limits_{i=1}^{K} \tau_{i}\ln \left(1+{\gamma_{i} \sum\nolimits_{j=0}^{i-1}\tau_{j}\over \tau_{i}}\right)
τmaxT(τ)=i=1∑Kτiln(1+τiγi∑j=0i−1τj)(5)
s
.
t
.
τ
i
≥
0
,
∀
i
∈
{
0
,
1
,
2
,
⋯
,
K
}
∑
i
=
0
K
τ
i
≤
1
{\rm s}.{\rm t}. \ \ \tau_{i}\geq 0, \ \ \forall i \in \ \{0,1,2, \cdots, K\}\\ \qquad \ \sum\limits_{i=0}^{K} \tau_{i}\leq 1
s.t. τi≥0, ∀i∈ {0,1,2,⋯,K} i=0∑Kτi≤1(6)(7)
问题1是凸优化问题。 为了说明这一点,我们首先提出以下引理。
Lemma 1
用户i的吞吐量函数 T i ( τ ) ≜ τ i ln ( 1 + γ i ∑ j = 0 i − 1 τ j τ i ) , ∀ i ∈ { 1 , ⋯ , K } T_{i}({\tau}) \triangleq \tau_{i}\ln \left(1+{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}\over \tau_{i}}\right), \ \forall i \ \in \ \{1, \cdots, K\} Ti(τ)≜τiln(1+τiγi∑j=0i−1τj), ∀i ∈ {1,⋯,K}是 τ = [ τ 0 , ⋯ , τ K ] T ≻ 0 {\tau}=[\tau_{0}, \ \cdots, \ \tau_{K}]^{T}\succ {\bf 0} τ=[τ0, ⋯, τK]T≻0的凹函数
Proof of Lemma 1
根据[11]的3.1.4二阶条件,如果函数的Hessian为半负定的,则该函数为凹函数
因此,为了证明
T
i
(
τ
)
{T}_{i}({\tau})
Ti(τ)是τ的凹函数,我们需要证明其Hessian为半负定的
用Hi表示 T i ( τ ) {T}_{i}({\tau}) Ti(τ)的Hessian,并在第m行第n列用 d m , n ( i ) d_{m, n}^{(i)} dm,n(i)表示其元素
Hessian是怎么计算的 ?
Hi的对角线项即m = n
d
m
,
m
(
i
)
=
−
γ
i
2
τ
i
(
γ
i
∑
j
=
0
i
−
1
τ
j
+
τ
i
)
2
,
m
<
i
−
γ
i
2
(
∑
j
=
0
i
−
1
τ
j
)
2
τ
i
(
γ
i
∑
j
=
0
i
−
1
τ
j
+
τ
i
)
2
,
m
=
i
0
,
m
>
i
d_{m, m}^{(i)}= -{\gamma_{i}^{2}\tau_{i}\over (\gamma_{i} \sum\nolimits_{j=0}^{i-1}\tau_{j}+ \tau_{i})^{2}}, m < i\\ -{\gamma_{i}^{2}(\sum\nolimits_{j=0}^{i-1} \tau_{j})^{2}\over \tau_{i}(\gamma_{i} \sum\nolimits_{j=0}^{i-1} \tau_{j}+ \tau_{i})^{2}}, m=i \\ 0, m > i
dm,m(i)=−(γi∑j=0i−1τj+τi)2γi2τi,m<i−τi(γi∑j=0i−1τj+τi)2γi2(∑j=0i−1τj)2,m=i0,m>i
Hi的非对角项
d
m
,
n
(
i
)
=
−
γ
i
2
τ
i
(
γ
i
∑
j
=
0
i
−
1
τ
j
+
τ
i
)
2
,
m
<
i
a
n
d
n
<
i
,
0
,
m
>
i
o
r
n
>
i
,
−
γ
i
2
∑
j
=
0
i
−
1
τ
j
(
γ
i
∑
j
=
0
i
−
1
τ
j
+
τ
i
)
2
,
o
t
h
e
r
w
i
s
e
d_{m, n}^{(i)}= -{\gamma_{i}^{2}\tau_{i}\over (\gamma_{i} \sum\nolimits_{j=0}^{i-1}\tau_{j}+ \tau_{i})^{2}}, m < i \ {\rm and} \ n < i,\\ 0, m>i \ {\rm or} \ n > i, \\ -{\gamma_{i}^{2}\sum\nolimits_{j=0}^{i-1} \tau_{j}\over (\gamma_{i} \sum\nolimits_{j=0}^{i-1} \tau_{j}+ \tau_{i})^{2}}, {\rm otherwise}
dm,n(i)=−(γi∑j=0i−1τj+τi)2γi2τi,m<i and n<i,0,m>i or n>i,−(γi∑j=0i−1τj+τi)2γi2∑j=0i−1τj,otherwise
对于任何给定的实向量
v
=
[
v
0
,
⋯
,
v
K
]
T
{v}=[v_{0}, \ \cdots, \ v_{K}]^{T}
v=[v0, ⋯, vK]T
v
T
H
i
v
=
−
γ
i
2
τ
i
(
γ
i
∑
j
=
0
i
−
1
τ
j
+
τ
i
)
2
(
τ
i
∑
j
=
0
i
−
1
v
j
−
v
i
∑
j
=
0
i
−
1
τ
j
)
2
≤
0
{v}^{T}{H}_{i}{v} =- {\gamma_{i}^{2}\over \tau_{i}\left(\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}+\tau_{i}\right)^{2}} \left(\tau_{i} \sum\limits_{j=0}^{i-1}v_{j}-v_{i} \sum\limits_{j=0}^{i-1}\tau_{j}\right)^{2} \leq 0
vTHiv=−τi(γi∑j=0i−1τj+τi)2γi2(τij=0∑i−1vj−vij=0∑i−1τj)2≤0
其中不等式源于
τ
i
≥
0
\tau_{i}\geq 0
τi≥0的事实
因此,Hi是半负定的
然后引理1得证
Proposition 1
问题1是凸优化问题
Proof of Proposition 1
-
根据[11]的3.2.1非负加权求和,凹函数的非负加权求和是凹函数
然后,从引理1可以看出,由(1)给出的问题1的目标函数是τ的凹函数,因为它是凹函数 T i ( τ ) T_{i}({\tau}) Ti(τ)的求和
应该是由(4)给出的吧 ? -
问题1的所有约束都是仿射的
因此问题1是凸优化问题
仿射组合是系数之和=1的线性组合
凸组合是系数之和=1且每个系数>=0的线性组合
线性函数和仿射函数都是凸函数也都是凹函数
4.2.1凸优化问题的条件
- 目标函数是凸的
- 不等式约束函数是凸的
- 等式约束函数是仿射的(问题1没有等式约束)
问题1的另一个重要特征在以下命题中提出
Proposition 2
问题1的最佳时间分配 τ ∗ = [ τ 0 ∗ , ⋯ , τ K ∗ ] T {\tau}^{\ast} \ = [\tau_{0}^{\ast}, \ \cdots, \ \tau_{K}^{\ast}]^{T} τ∗ =[τ0∗, ⋯, τK∗]T必须满足 ∑ i = 0 K τ i ∗ = 1 \sum\nolimits_{i=0}^{K}\tau_{i}^{\ast}=1 ∑i=0Kτi∗=1
Proof of Proposition 2
这可以通过矛盾证明
假设
τ
′
=
[
τ
0
′
,
⋯
,
τ
K
′
]
T
{\tau}^{\prime}=[\tau_{0}^{\prime}, \ \cdots, \ \tau_{K}^{\prime}]^{T}
τ′=[τ0′, ⋯, τK′]T是问题1的最优解,满足
∑
i
=
0
K
τ
i
′
<
1
\sum\nolimits_{i=0}^{K}\tau_{i}^{\prime}<1
∑i=0Kτi′<1
因此
τ
0
′
<
1
−
∑
i
=
1
K
τ
i
′
\tau_{0}^{\prime} < 1- \sum\nolimits_{i=1}^{K}\tau_{i}^{\prime}
τ0′<1−∑i=1Kτi′
容易验证问题1(5)中给出的目标函数是关于
τ
0
\tau_{0}
τ0的单调递增函数(
τ
=
[
τ
0
,
…
,
τ
K
]
T
{\tau}=[\tau_{0}, \ \ldots, \ \tau_{K}]^{T}
τ=[τ0, …, τK]T的其他分量不变的情况下)
因此向量
τ
′
{\tau}^{\prime}
τ′下的(5)的值 < 向量
[
1
−
∑
i
=
1
K
τ
i
′
,
τ
1
′
,
⋯
,
τ
K
′
]
T
[1-\sum\nolimits_{i=1}^{K}\tau_{i}^{\prime}, \tau_{1}^{\prime}, \cdots, \tau_{K}^{\prime}]^{T}
[1−∑i=1Kτi′,τ1′,⋯,τK′]T下的(5)的值
所以向量
τ
′
{\tau}^{\prime}
τ′不是问题1的最优解,这与我们的假设相矛盾
因此,Proposition 2 成立
Optimal Solution
在本节中,我们使用凸优化技术得出问题1的最优解
根据[11]的5.1.1 lagrange函数L(τ,λ)
问题1的Lagrangian为
L
(
τ
,
λ
)
=
∑
i
=
1
K
τ
i
ln
(
1
+
γ
i
∑
j
=
0
i
−
1
τ
j
τ
i
)
−
λ
(
∑
i
=
0
K
τ
i
−
1
)
{L}({\tau},\lambda)= \sum\limits_{i=1}^{K} \tau_{i}\ln\left(1+{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}\over \tau_{i}}\right)- \lambda\left(\sum\limits_{i=0}^{K}\tau_{i}-1\right)
L(τ,λ)=i=1∑Kτiln(1+τiγi∑j=0i−1τj)−λ(i=0∑Kτi−1)(11)
为什么是
−
λ
- \lambda
−λ ? 我觉得根据[11]的5.1.1应该是
+
λ
+ \lambda
+λ
为什么
λ
\lambda
λ非负 ? 我觉得是因为5.2对偶问题那里的不等式约束要求>=0
其中
λ
\lambda
λ是与问题1约束(7)中给出的约束相关的非负Lagrangian对偶变量
问题1的对偶函数
G
(
λ
)
=
min
τ
∈
S
L
(
τ
,
λ
)
{G}(\lambda)=\min\limits_{{\tau} \in {S}}{L}({\tau}, \lambda)
G(λ)=τ∈SminL(τ,λ)
其中S是由问题1约束 (6) and (7)指定的τ的可行集
可以看到存在一个(满足
∑
i
=
0
K
τ
i
<
1
\sum\nolimits_{i=0}^{K}\tau_{i}<1
∑i=0Kτi<1的)(所有元素严格正的,即
τ
i
>
0
,
∀
i
∈
{
0
,
1
,
⋯
,
K
}
\tau_{i}>0, \forall i\in\{0,1, \cdots, K\}
τi>0,∀i∈{0,1,⋯,K})
τ
∈
S
{\tau} \in {S}
τ∈S
为什么可以看到存在(不等式约束严格成立的)解 ?
因此,根据[11]的5.2.3 Slater条件,满足不等式约束函数<0,所以强对偶性适用于该问题
因此,根据[11]的5.5.3 KKT条件,问题1可以解决,该条件由下式给出:
∑
i
=
0
K
τ
i
∗
≤
1
\sum\limits_{i=0}^{K} \tau_{i}^{\ast}\leq 1
i=0∑Kτi∗≤1(13)
λ
∗
(
∑
i
=
0
K
τ
i
∗
−
1
)
=
0
\lambda^{\ast}\left(\sum\limits_{i=0}^{K} \tau_{i}^{\ast}-1\right)=0
λ∗(i=0∑Kτi∗−1)=0(14)
∂
L
(
τ
,
λ
∗
)
∂
τ
i
∣
τ
i
=
τ
i
∗
=
0
,
∀
i
∈
{
0
,
1
,
⋯
,
K
}
\left. {\partial {L}({\tau},\lambda^{\ast})\over \partial\tau_{i}} \right\vert_{\tau_{i}= \tau_{i}^{\ast}}=0, \forall i\in\{0,1, \cdots, K\}
∂τi∂L(τ,λ∗)∣∣∣τi=τi∗=0,∀i∈{0,1,⋯,K}(15)
其中
τ
i
∗
,
∀
i
\tau_{i}^{\ast}, \forall i
τi∗,∀i和
λ
∗
\lambda^{\ast}
λ∗表示问题1的最优原始解和对偶解
lagrange函数L(τ,λ)
L
(
τ
,
λ
)
=
∑
i
=
1
K
τ
i
ln
(
1
+
γ
i
∑
j
=
0
i
−
1
τ
j
τ
i
)
−
λ
(
∑
i
=
0
K
τ
i
−
1
)
{L}({\tau},\lambda)= \sum\limits_{i=1}^{K} \tau_{i}\ln\left(1+{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}\over \tau_{i}}\right)- \lambda\left(\sum\limits_{i=0}^{K}\tau_{i}-1\right)
L(τ,λ)=i=1∑Kτiln(1+τiγi∑j=0i−1τj)−λ(i=0∑Kτi−1)(11)
B
i
(
x
)
≜
ln
(
1
+
γ
i
x
)
−
γ
i
x
1
+
γ
i
x
,
∀
i
∈
{
1
,
⋯
,
K
}
{B}_{i}(x) \triangleq \ln(1+\gamma_{i}x)-{\gamma_{i}x\over 1+\gamma_{i}x},\ \forall i\in \{1, \cdots, K\}
Bi(x)≜ln(1+γix)−1+γixγix, ∀i∈{1,⋯,K}
B
i
(
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
)
=
ln
(
1
+
γ
i
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
)
−
γ
i
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
1
+
γ
i
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
=
ln
(
1
+
γ
i
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
)
−
γ
i
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
+
γ
i
∑
j
=
0
i
−
1
τ
j
∗
,
∀
i
∈
{
1
,
⋯
,
K
}
{B}_{i}\left({\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}\right)= \ln(1+\gamma_{i}{\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}) -{\gamma_{i}{\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}\over 1+\gamma_{i}{\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}}\\ =\ln(1+{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}) -{{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}}\over \tau_{i}^{\ast}+{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}}} ,\ \forall i\in \{1, \cdots, K\}
Bi(τi∗∑j=0i−1τj∗)=ln(1+γiτi∗∑j=0i−1τj∗)−1+γiτi∗∑j=0i−1τj∗γiτi∗∑j=0i−1τj∗=ln(1+τi∗γi∑j=0i−1τj∗)−τi∗+γi∑j=0i−1τj∗γi∑j=0i−1τj∗, ∀i∈{1,⋯,K}
然后,从(15),得出
这里可以假设K=3的情况推导一下,然后推广得到下式
∑
k
=
1
K
[
τ
k
(
1
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
)
(
γ
k
τ
k
)
]
−
λ
∗
=
0
\sum\limits_{k=1}^{K} [\tau_{k}\left({1\over {\gamma_{k}\sum\nolimits_{j=0}^{k-1} \tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1}\right)\left(\gamma_{k}\over\tau_{k}\right)] -\lambda^{\ast} = 0
k=1∑K[τk⎝⎛τk∗γk∑j=0k−1τj∗+11⎠⎞(τkγk)]−λ∗=0(16)
∑
k
=
1
K
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
=
λ
∗
\sum\limits_{k=1}^{K} {\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1} \tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1} = \lambda^{\ast}
k=1∑Kγkτk∗∑j=0k−1τj∗+1γk=λ∗(16)
ln ( 1 + γ i ∑ j = 0 i − 1 τ j ∗ τ i ∗ ) − γ i ∑ j = 0 i − 1 τ j ∗ τ i ∗ + γ i ∑ j = 0 i − 1 τ j ∗ + ∑ k = i + 1 K γ k γ k ∑ j = 0 k − 1 τ j ∗ τ k ∗ + 1 = B i ( ∑ j = 0 i − 1 τ j ∗ τ i ∗ ) + ∑ k = i + 1 K γ k γ k ∑ j = 0 k − 1 τ j ∗ τ k ∗ + 1 = λ ∗ , ∀ i ∈ { 1 , ⋯ , K − 1 } \ln(1+{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}) -{{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}}\over \tau_{i}^{\ast}+{\gamma_{i}\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}}}+ \sum\limits_{k=i+1}^{K}{\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1}\tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1}\\ ={B}_{i}\left({\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}\right)+ \sum\limits_{k=i+1}^{K}{\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1}\tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1} =\lambda^{\ast},\forall i\in\{1, \cdots, K-1\} ln(1+τi∗γi∑j=0i−1τj∗)−τi∗+γi∑j=0i−1τj∗γi∑j=0i−1τj∗+k=i+1∑Kγkτk∗∑j=0k−1τj∗+1γk=Bi(τi∗∑j=0i−1τj∗)+k=i+1∑Kγkτk∗∑j=0k−1τj∗+1γk=λ∗,∀i∈{1,⋯,K−1}(17)
ln
(
1
+
γ
K
∑
j
=
0
K
−
1
τ
j
∗
τ
K
∗
)
−
γ
K
∑
j
=
0
K
−
1
τ
j
∗
τ
K
∗
+
γ
K
∑
j
=
0
K
−
1
τ
j
∗
=
B
K
(
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
)
=
λ
∗
\ln(1+{\gamma_{K}\sum\nolimits_{j=0}^{K-1}\tau_{j}^{\ast}\over \tau_{K}^{\ast}}) -{{\gamma_{K}\sum\nolimits_{j=0}^{K-1}\tau_{j}^{\ast}}\over \tau_{K}^{\ast}+{\gamma_{K}\sum\nolimits_{j=0}^{K-1}\tau_{j}^{\ast}}}\\ ={B}_{K}\left({\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}\right) =\lambda^{\ast}
ln(1+τK∗γK∑j=0K−1τj∗)−τK∗+γK∑j=0K−1τj∗γK∑j=0K−1τj∗=BK(τi∗∑j=0i−1τj∗)=λ∗(18)
可以看出等式(16)-(18)的右侧相同
将(16)代入(17)得到
∑
k
=
1
K
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
=
B
i
(
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
)
+
∑
k
=
i
+
1
K
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
,
∀
i
∈
{
1
,
⋯
,
K
−
1
}
\sum\limits_{k=1}^{K} {\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1} \tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1} ={B}_{i}\left({\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}\right) +\sum\limits_{k=i+1}^{K}{\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1}\tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1} ,\forall i\in\{1, \cdots, K-1\}
k=1∑Kγkτk∗∑j=0k−1τj∗+1γk=Bi(τi∗∑j=0i−1τj∗)+k=i+1∑Kγkτk∗∑j=0k−1τj∗+1γk,∀i∈{1,⋯,K−1}
B
i
(
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
)
=
∑
k
=
1
K
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
−
∑
k
=
i
+
1
K
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
,
∀
i
∈
{
1
,
⋯
,
K
−
1
}
{B}_{i}\left({\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}\right) =\sum\limits_{k=1}^{K} {\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1} \tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1}- \sum\limits_{k=i+1}^{K}{\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1}\tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1} ,\forall i\in\{1, \cdots, K-1\}
Bi(τi∗∑j=0i−1τj∗)=k=1∑Kγkτk∗∑j=0k−1τj∗+1γk−k=i+1∑Kγkτk∗∑j=0k−1τj∗+1γk,∀i∈{1,⋯,K−1}
B
i
(
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
)
=
∑
k
=
1
i
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
,
∀
i
∈
{
1
,
⋯
,
K
−
1
}
{B}_{i}\left({\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}\right) =\sum\limits_{k=1}^{i} {\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1} \tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1} ,\forall i\in\{1, \cdots, K-1\}
Bi(τi∗∑j=0i−1τj∗)=k=1∑iγkτk∗∑j=0k−1τj∗+1γk,∀i∈{1,⋯,K−1}(20)
B
1
(
τ
0
∗
τ
1
∗
)
−
γ
1
γ
1
τ
0
∗
τ
1
∗
+
1
=
0
{B}_{1} \left({\tau_{0}^{\ast}\over \tau_{1}^{\ast}} \right) -{\gamma_{1}\over \gamma_{1} {\tau_{0}^{\ast}\over \tau_{1}^{\ast}}+1}=0
B1(τ1∗τ0∗)−γ1τ1∗τ0∗+1γ1=0(19)
B
2
(
∑
j
=
0
1
τ
j
∗
τ
2
∗
)
=
∑
k
=
1
2
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
{B}_{2}\left({\sum\nolimits_{j=0}^{1}\tau_{j}^{\ast}\over \tau_{2}^{\ast}}\right) =\sum\limits_{k=1}^{2} {\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1} \tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1}
B2(τ2∗∑j=01τj∗)=k=1∑2γkτk∗∑j=0k−1τj∗+1γk(20)
B
2
(
∑
j
=
0
1
τ
j
∗
τ
2
∗
)
−
γ
2
γ
2
∑
j
=
0
1
τ
j
∗
τ
2
∗
+
1
=
γ
1
γ
1
∑
j
=
0
1
−
1
τ
j
∗
τ
1
∗
+
1
{B}_{2} \left({\sum\nolimits_{j=0}^{1} \tau_{j}^{\ast}\over \tau_{2}^{\ast}}\right) -{\gamma_{2}\over \gamma_{2}{\sum\nolimits_{j=0}^{1}\tau_{j}^{\ast}\over \tau_{2}^{\ast}}+1} = {\gamma_{1}\over \gamma_{1}{\sum\nolimits_{j=0}^{1-1}\tau_{j}^{\ast}\over \tau_{1}^{\ast}}+1}
B2(τ2∗∑j=01τj∗)−γ2τ2∗∑j=01τj∗+1γ2=γ1τ1∗∑j=01−1τj∗+1γ1(21)
⋮
\vdots
⋮
将(16)代入(18)得到
B
K
(
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
)
=
∑
k
=
1
K
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
{B}_{K}\left({\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}\right) =\sum\limits_{k=1}^{K} {\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1} \tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1}
BK(τi∗∑j=0i−1τj∗)=k=1∑Kγkτk∗∑j=0k−1τj∗+1γk
B
K
(
∑
j
=
0
K
−
1
τ
j
∗
τ
K
∗
)
−
γ
K
γ
K
∑
j
=
0
K
−
1
τ
j
∗
τ
K
∗
+
1
=
∑
k
=
1
K
−
1
γ
k
γ
k
∑
j
=
0
k
−
1
τ
j
∗
τ
k
∗
+
1
{B}_{K} \left({\sum\nolimits_{j=0}^{K-1} \tau_{j}^{\ast}\over \tau_{K}^{\ast}}\right) -{\gamma_{K}\over \gamma_{K}{\sum\nolimits_{j=0}^{K-1}\tau_{j}^{\ast}\over \tau_{K}^{\ast}}+1} = \sum\limits_{k=1}^{K-1}{\gamma_{k}\over \gamma_{k}{\sum\nolimits_{j=0}^{k-1}\tau_{j}^{\ast}\over \tau_{k}^{\ast}}+1}
BK(τK∗∑j=0K−1τj∗)−γKτK∗∑j=0K−1τj∗+1γK=k=1∑K−1γkτk∗∑j=0k−1τj∗+1γk(21)
x i ≜ ∑ j = 0 i − 1 τ j ∗ τ i ∗ , ∀ i ∈ { 1 , ⋯ , K } x_{i}\triangleq {\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}}, \ \forall i\in\{1, \cdots, K\} xi≜τi∗∑j=0i−1τj∗, ∀i∈{1,⋯,K}(22)
(19)–(21)的右侧
c
1
≜
0
c_{1}\triangleq 0
c1≜0
c
i
≜
∑
k
=
1
i
−
1
γ
k
γ
k
x
k
+
1
,
∀
i
∈
{
2
,
⋯
,
K
}
c_{i}\triangleq \sum\limits_{k=1}^{i-1} {\gamma_{k}\over \gamma_{k}x_{k}+1}, \forall i\in\{2, \cdots, K\}
ci≜k=1∑i−1γkxk+1γk,∀i∈{2,⋯,K}(24)
F
i
(
x
i
)
≜
B
i
(
x
i
)
−
γ
i
γ
i
x
i
+
1
,
∀
i
∈
{
1
,
⋯
,
K
}
{F}_{i}(x_{i}) \triangleq {B}_{i}(x_{i})-{\gamma_{i}\over \gamma_{i}x_{i}+1},\ \forall i\in\{1, \cdots, K\}
Fi(xi)≜Bi(xi)−γixi+1γi, ∀i∈{1,⋯,K}
设
c
i
≥
0
,
∀
i
∈
{
1
,
⋯
,
K
}
c_{i}\geq 0, \forall i\in \ \{1, \cdots, K\}
ci≥0,∀i∈ {1,⋯,K}为一系列常数
可得到
x
i
x_{i}
xi表示的
F
i
(
x
)
=
c
i
{F}_{i}(x)=c_{i}
Fi(x)=ci的解为 ? 怎么解的,感觉好复杂
x
i
=
1
γ
i
(
e
W
(
γ
i
−
1
e
c
i
+
1
)
+
c
i
+
1
−
1
)
,
∀
i
∈
{
1
,
⋯
,
K
}
x_{i}={1\over \gamma_{i}} \left(e^{ {W}\left({\gamma_{i}-1\over {\rm e}^{c_{i}+1}}\right)+c_{i}+1}-1\right), \ \forall i \in\{1, \cdots, K\}
xi=γi1(eW(eci+1γi−1)+ci+1−1), ∀i∈{1,⋯,K}(26)
W(⋅)是Lambert W函数[10]
从(26)可以看出,我们需要ci来计算xi
当i = 1时,由于c1 = 0,因此可以容易地计算x1。 要计算x2,我们需要c2的值
从(24)可以看出,如果已知x1,则可以很容易地计算出c2
因此,可以利用所获得的x1来计算x2
类似地,对于所有其他i≥2,从(24)中可以看出,ci仅取决于先前的{x1,⋯,xi-1}的值
因此,使用相同的方法,可以按顺序计算所有剩余的xi
现在继续获取
τ
i
∗
,
∀
i
∈
{
1
,
⋯
,
K
}
\tau_{i}^{\ast}, \forall i \ \in \{1, \cdots, K\}
τi∗,∀i ∈{1,⋯,K}
Proposition 2
∑
i
=
0
K
τ
i
∗
=
1
\sum\nolimits_{i=0}^{K}\tau_{i}^{\ast}=1
∑i=0Kτi∗=1
x
i
≜
∑
j
=
0
i
−
1
τ
j
∗
τ
i
∗
,
∀
i
∈
{
1
,
⋯
,
K
}
x_{i}\triangleq {\sum\nolimits_{j=0}^{i-1}\tau_{j}^{\ast}\over \tau_{i}^{\ast}} , \ \forall i\in\{1, \cdots, K\}
xi≜τi∗∑j=0i−1τj∗, ∀i∈{1,⋯,K}(22)
1
+
x
i
≜
∑
j
=
0
i
τ
j
∗
τ
i
∗
=
1
−
∑
j
=
i
+
1
K
τ
j
∗
τ
i
∗
,
∀
i
∈
{
1
,
⋯
,
K
}
1+x_{i}\triangleq {\sum\nolimits_{j=0}^{i}\tau_{j}^{\ast}\over \tau_{i}^{\ast}} ={1-\sum\nolimits_{j=i+1}^{K}\tau_{j}^{\ast}\over \tau_{i}^{\ast}} , \ \forall i\in\{1, \cdots, K\}
1+xi≜τi∗∑j=0iτj∗=τi∗1−∑j=i+1Kτj∗, ∀i∈{1,⋯,K}
x
K
≜
∑
j
=
0
K
−
1
τ
j
∗
τ
K
∗
x_{K}\triangleq {\sum\nolimits_{j=0}^{K-1}\tau_{j}^{\ast}\over \tau_{K}^{\ast}}
xK≜τK∗∑j=0K−1τj∗
1
+
x
K
≜
1
τ
K
∗
1+x_{K}\triangleq {1\over \tau_{K}^{\ast}}
1+xK≜τK∗1
用得到的xi值,可以得到最优的
τ
i
∗
\tau_{i}^{\ast}
τi∗
τ
K
∗
=
1
1
+
x
K
\tau_{K}^{\ast}={1\over 1+x_{K}}
τK∗=1+xK1(27)
τ
i
∗
=
1
−
∑
j
=
i
+
1
K
τ
j
∗
1
+
x
i
,
∀
i
∈
{
K
−
1
,
⋯
,
1
}
\tau_{i}^{\ast}={1-\sum\nolimits_{j=i+1}^{K}\tau_{j}^{\ast}\over 1+x_{i}}, \forall i\in\{K-1, \cdots, 1\}
τi∗=1+xi1−∑j=i+1Kτj∗,∀i∈{K−1,⋯,1}(28)
τ
0
∗
=
1
−
∑
j
=
1
K
τ
j
∗
1
+
x
0
=
1
−
∑
j
=
1
K
τ
j
∗
\tau_{0}^{\ast}={1-\sum\nolimits_{j=1}^{K}\tau_{j}^{\ast}\over 1+x_{0}}=1-\sum\nolimits_{j=1}^{K}\tau_{j}^{\ast}
τ0∗=1+x01−∑j=1Kτj∗=1−∑j=1Kτj∗(28)(29)
τ
0
∗
=
1
−
(
τ
K
∗
+
⋯
+
τ
1
∗
)
\tau_{0}^{\ast}=1-(\tau_{K}^{\ast}+ \cdots+\tau_{1}^{\ast})
τ0∗=1−(τK∗+⋯+τ1∗)(29)
xi由(26)给出
SECTION Algorithm 1 计算最佳时间分配
为了方便计算最佳时间分配,提出了以下算法。
x
0
=
0
x_{0}= 0
x0=0为什么 ?
c
i
≜
∑
k
=
1
i
−
1
γ
k
γ
k
x
k
+
1
,
∀
i
∈
{
2
,
⋯
,
K
}
c_{i}\triangleq \sum\limits_{k=1}^{i-1} {\gamma_{k}\over \gamma_{k}x_{k}+1}, \forall i\in\{2, \cdots, K\}
ci≜k=1∑i−1γkxk+1γk,∀i∈{2,⋯,K}(24)
c
i
+
1
c_{i+1}
ci+1i可以=K吗 ? 从(24)看,应该是不行的吧
初始化 γ \gamma γ各个无线用户的信噪比
是否对 γ \gamma γ进行升序或者降序排序
初始化 c 1 ≜ 0 c_{1}\triangleq 0 c1≜0, x 0 = 0 x_{0}= 0 x0=0
for i=1:K
x i = 1 γ i ( e W ( γ i − 1 e c i + 1 ) + c i + 1 − 1 ) x_{i}={1\over \gamma_{i}} \left(e^{ {W}\left({\gamma_{i}-1\over {\rm e}^{c_{i}+1}}\right)+c_{i}+1}-1\right) xi=γi1(eW(eci+1γi−1)+ci+1−1)(26)
c i + 1 ≜ ∑ k = 1 i γ k γ k x k + 1 c_{i+1}\triangleq \sum\limits_{k=1}^{i} {\gamma_{k}\over \gamma_{k}x_{k}+1} ci+1≜k=1∑iγkxk+1γk(24)
end for
τ K ∗ = 1 1 + x K \tau_{K}^{\ast}={1\over 1+x_{K}} τK∗=1+xK1(27)
for i=K-1:0
τ i ∗ = 1 − ∑ j = i + 1 K τ j ∗ 1 + x i \tau_{i}^{\ast}={1-\sum\nolimits_{j=i+1}^{K}\tau_{j}^{\ast}\over 1+x_{i}} τi∗=1+xi1−∑j=i+1Kτj∗(28)
end for
输出 τ i ∗ , ∀ i ∈ { 0 , ⋯ , K } \tau_{i}^{\ast}, \forall i \ \in \{0, \cdots, K\} τi∗,∀i ∈{0,⋯,K}
Numerical Results
在本节中,将提供几个数值示例来评估所提出算法的性能。
仿真设置
在仿真中,假设HAP接收器处的噪声功率σ2=1
我们假设所有信道是i.i.d.瑞利衰落,因此信道功率增益呈指数分布。
我们进一步假设信道功率增益的平均值=1
值得指出的是,假设信道功率增益的特定分布不会改变所研究问题和本文提出的算法的结构。
为简单起见,假设所有用户的能量收集效率相同且等于1,即
η
i
=
1
,
∀
i
\eta_{i}=1, \forall i
ηi=1,∀i
以下示例中给出的结果是通过平均1000多个信道实现获得的
HAP发射功率 P H P_{H} PH的影响
在图3中,我们研究了最佳时间分配和相等时间分配下HAP的发射功率(横坐标,自变量)对所提出系统的吞吐量
P
H
P_{H}
PH(纵坐标,因变量)的影响。
在此示例中,为简单起见,我们考虑存在2个用户的情况,即K = 2
-
最佳时间分配始终比同等时间分配执行得更好。
-
当HAP的发射功率 P H P_{H} PH按预期增加时,两种情况的吞吐量都会增加。
HAP的发射功率 P H P_{H} PH值越高,表明用户可以从HAP收获更多的能量,因此可以更高的传输速率进行传输。
因此,系统的吞吐量增加。 -
最佳时间分配和相等时间分配之间的吞吐量差距随着 P H P_{H} PH的增加而增加。
这表明当 P H P_{H} PH很大时,时间分配起着更重要的作用
用户数量K的影响
在图4中,我们研究了最佳时间分配和相等时间分配下用户数量(横坐标,自变量)对所提出系统吞吐量(纵坐标,因变量)的影响。
在此示例中,HAP的发射功率固定为
P
H
P_{H}
PH= 10 dB
- 最佳时间分配和相等时间分配之间的吞吐量差距随着用户数量(K)的增加而增大。
从图4观察到,当K = 1时,间隙可以忽略。 但是,当K = 10时,间隙大到1。这表明,当K大时,时间分配起着更重要的作用。 - 两种情况下的吞吐量都随着用户数量的增加而增加。 直觉如下。
假设有5个用户。
最佳时间分配为 τ ( K = 5 ) ∗ {\tau}_{(K=5)}^{\ast} τ(K=5)∗,最大吞吐量为 T ( K = 5 ) ∗ {T}_{(K=5)}^{\ast} T(K=5)∗
现在将5个用户添加到系统中,并重新计算
最佳时间分配为 τ ( K = 10 ) ′ {\tau}_{(K=10)}^{\prime} τ(K=10)′和最大吞吐量为 T ( K = 10 ) ′ T_{(K=10)}^{\prime} T(K=10)′
如果 T ( K = 10 ) ′ = T ( K = 5 ) ∗ T_{(K=10)}^{\prime}={T}_{(K=5)}^{\ast} T(K=10)′=T(K=5)∗,则“那么K = 10的最优解”就是
使用 τ ( K = 5 ) ∗ {\tau}_{(K=5)}^{\ast} τ(K=5)∗设置5个老用户的时间分配,并使用o设置5个新用户的时间分配
o是什么 ? setting the time allocation of the five new users using o.
由于问题1的最佳时间分配必须为正(从(26)-(29)观察),即 τ i > 0 , ∀ i \tau_{i} > 0, \forall i τi>0,∀i
这与我们的假设相矛盾
因此,必须有 T ( K = 10 ) ′ > T ( K = 5 ) ∗ T_{(K=10)}^{\prime}>{T}_{(K=5)}^{\ast} T(K=10)′>T(K=5)∗
用户调度的影响
在图5中,我们研究了用户调度对所提出系统的吞吐量的影响
研究了两种调度方案下HAP的发射功率
P
H
P_{H}
PH(横坐标,自变量)对所提出系统的吞吐量(纵坐标,因变量)的影响
为简单起见,我们考虑有两个用户的情况,即K = 2
我们考虑两种调度方案
- 具有较低SNR(γL)的用户被调度为首先发送
- 具有较高SNR(γH)的用户被调度为首先发送
可以看出
- 第一调度方案总是比第二调度方案性能更好
这表明我们应该根据用户的SNR对其进行排序,并按照以下顺序安排用户 [ γ 1 , ⋯ γ K [\gamma_{1}, \ \cdots \, \gamma_{K} [γ1, ⋯γK,如果 γ 1 < ⋯ < γ K \gamma_{1} < \cdots < \gamma_{K} γ1<⋯<γK - 两种调度方案之间的吞吐量差距随着HAP的发射功率
P
H
P_{H}
PH的增加而增加
这表明当HAP的发射功率 P H P_{H} PH很大时,用户调度更为重要。
Conclusions
在本文中,我们研究了最佳时间分配,以在给定的总时间常数下最大化具有多个用户的无线通信网络的吞吐量。
公式化的吞吐量最大化问题被证明是凸优化问题。
通过使用凸优化技术,我们获得了封闭形式表达中的最佳时间分配策略。
为了方便计算,我们还提出了一种具有线性复杂度的简单算法来计算最佳时间分配。
通过仿真显示,网络的总吞吐量随着用户数量的增加而增加。
我们还表明,应将具有低SNR的用户安排为通过仿真首先进行传输。