cudnn8.1.0安装

前提已安装cuda11.2或其他版本

官网下载:cuDNN Library for Linux (x86_64)

链接: nvidia官网

安装

tar -xzvf cudnn-11.2-linux-x64-v8.1.0.77.tgz  #解压
sudo cp cuda/include/*  /usr/local/cuda-11.2/include/ 
sudo cp cuda/lib64/libcudnn*  /usr/local/cuda-11.2/lib64/
sudo chmod a+r /usr/local/cuda-11.2/include/*
sudo chmod a+r /usr/local/cuda-11.2/lib64/libcudnn*

输入以下命令查看cudnn是否安装成功
cat /usr/local/cuda-11.2/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

共两个压缩包(解压后145M),此为其一 环境: windows10(X64) vs2015 Anaconda3-4.4.0-Windows-x86_64(python3.6) cuda_8.0.61_win10(basic) cuda_8.0.61.2_windows(Patch 2) cudnn-8.0 tensorflow1.30 pip install tensorflow-gpu后 Anaconda prompt中输入:import tensorflow时,报错:ImportError,需要用到这个库文件,分别copy至CUDA\v8.0 中三个目录下:bin,include,lib 具体错误一般如下: File "C:\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 18, in swig_import_helper return importlib.import_module(mname) File "C:\Anaconda3\lib\importlib\__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "", line 986, in _gcd_import File "", line 969, in _find_and_load File "", line 958, in _find_and_load_unlocked File "", line 666, in _load_unlocked File "", line 577, in module_from_spec File "", line 906, in create_module File "", line 222, in _call_with_frames_removed ImportError: DLL load failed: The specified module could not be found. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 66, in from tensorflow.python import pywrap_tensorflow File "C:\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 21, in _pywrap_tensorflow = swig_import_helper() File "C:\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 20, in swig_import_helper return importlib.import_module('_pywrap_tensorflow') File "C:\Anaconda3\lib\importlib\__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) ImportError: No module named '_pywrap_tensorflow' During handling of the above exception, another exception occurred: 。。。。。
您可以按照以下步骤下载并安装CUDNN1. 登录到NVIDIA开发者网站:https://developer.nvidia.com/。 2. 在顶部菜单中选择 "登录",使用您的NVIDIA帐户登录。如果没有帐户,您可以在网站上注册一个新帐户。 3. 登录后,将鼠标悬停在顶部菜单上的 "下载" 上,然后选择 "所有下载"。 4. 在 "操作系统" 下拉菜单中选择适合您系统的操作系统类型。 5. 在 "类别" 下拉菜单中选择 "加速库"。 6. 滚动页面并找到 "cuDNN",然后点击它。 7. 在 "cuDNN 下载" 页面上,选择适合您系统的 cuDNN 版本,并点击 "下载"。 8. 下载完成后,解压缩下载的文件。 安装CUDNN1. 打开终端或命令提示符,进入解压缩的文件夹。 2. 复制 cuDNN 文件到 CUDA 安装目录。例如,在 Linux 上,默认的 CUDA 安装目录是 /usr/local/cuda。您可以使用以下命令复制文件: ``` sudo cp -P include/cudnn*.h /usr/local/cuda/include sudo cp -P lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 3. 添加 cuDNN 到环境变量。编辑您的 .bashrc 文件,并在文件末尾添加以下行: ``` export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 4. 保存并关闭 .bashrc 文件,然后运行以下命令使更改生效: ``` source ~/.bashrc ``` 5. 现在,您已成功安装 cuDNN。您可以在代码中引入 cuDNN 库并使用它。 请注意,安装 cuDNN 需要先安装 CUDA,因为 cuDNN 是 CUDA 的一个加速库。在安装 cuDNN 之前,请确保已正确安装并配置了 CUDA。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值