高数草稿-定积分与不定积分

本文仅是个人理解,如有谬误,请望矫正

不定积分的求法

1 基础积分逆运算原函数

2 换元法

 2.1第一类换元法  {\color{Red} \int g(x)dx=\int f[\varphi (x)]\varphi '(x)dx= [\int f(u)du]_{u=\varphi (x)}} 

 2.2第二类换元法 (凑微分法){\color{Red} \int g(x)dx=\int f[\psi (x)]\psi'(x)dx= [\int f(u)du]_{u=\psi ^{-1}(x)}} 多用于带平方的根式

    {\color{Red} \int\frac{1}{\sqrt{a^{2}-x^{2}}}dx \rightarrow x=asint}     {\color{Red} \int\frac{​{1} }{ \sqrt {a^{2}+x^{2}}}dx \rightarrow x=atant}     {\color{Red} \int\ \frac{1}{\sqrt{x^{2}-a^{2}}}dx \rightarrow x=asect}

3 分部积分

{\color{Red} \int udv=uv-\int vdu}

4 有理数的积分

{\color{Red} \frac{P(x)}{Q(x)}=\frac{P_{1}(x)}{Q_{1}(x)}+\frac{P_{2}(x)}{Q_{2}(x)}}可扩展到多项式

5 表格积分法(适用于{\color{Red} \int u(x)*v(x)dx}不同类似函数的乘积形式,可用分部积分法证明)

假设{\color{Red} u(x)}好求导,{\color{Red} v(x)}易积分,则{\color{Red} u(x)}不断求导,{\color{Red} v(x)}不断积分

 5.1{\color{Red} u^k(x)=0\rightarrow \int u(x)*v(x)dx= \sum_{k=0}(-1)^ku^k(x)*v_{k+1}(x)+C }其中u是求导,v是积分,k是阶数

 5.2 {\color{Red} u(x)^k*v(x)_k=m(u(k)*v(k))\rightarrow \int u(x)*v(x)dx= (\sum_{k=0}(-1)^ku^k(x)*v_{k+1}(x))*\frac{m}{m+1}+C}

 5.3 {\color{Red} \int u(x)^k*v(x)_kdx}易求时,{\color{Red} \int u(x)*v(x)dx= \sum_{k=0}(-1)^ku^k(x)*v_{k+1}(x)+C+(-1)^{k-1}\int u(x)*v(x)dx }

6 组合积分法 构造一个与积分函数结构相似的积分加起来计算 最后分离

微积分

奇函数的定积分在对称区间上=0 偶函数的定积分在[a,0]区间上=2[a,-a]

反常积分

无穷限反常积分:积分区间存在{\color{Red} \propto }为反常积分记{\color{Red} \int_{\propto }^{b}f(x)dx=\lim_{t \to\propto }\int_{t}^{b}f(x)dx }(积分区间上下界均可为{\color{Red} \propto })

判断敛散方法

{\color{Red} f(x)}{\color{Red}g(x)}{\color{Red} [a,\propto )}连续,且{\color{Red} (a\leq x<+\propto )}

1 在该区间极限存在收敛,不存在则发散

2  在该区间有上界,则收敛

3 (比较审敛) 若{\color{Red}0\leq f(x)\leq g(x)},如果{\color{Red} \int_{a}^{+\propto }g(x)dx}收敛,则{\color{Red} \int_{a}^{+\propto }f(x)dx}有上界,{\color{Red} \int_{a}^{+\propto }f(x)dx}收敛

{\color{Red}0\leq g(x)\leq f(x) },如果{\color{Red} \int_{a}^{+\propto }g(x)dx}发散,则,{\color{Red} \int_{a}^{+\propto }f(x)dx}也发散

特别的,我们注意{\color{Red}\int_{a}^{+\propto }\frac{1}{x^{p}}dx},当{\color{Red}(p> 1 ) \int_{a}^{+\propto }\frac{1}{x^{p}}dx=[\frac{1}{1-p}x^{1-p}]_{a}^{+\propto}=[\frac{1}{1-p}(0-a^{1-p})]=-\frac{1}{1-p}a^{1-p}}{\color{Red}\int_{a}^{+\propto }\frac{1}{x^{p}}dx}收敛,当{\color{Red}(p\leq 1)\int_{a}^{+\propto }\frac{1}{x^{p}}dx=+\propto }发散,我们可推出下列敛散法

{\color{Red} a>0} ,且{\color{Red} f(x)\geq 0},根据(比较审敛),若存在{\color{Red} M>0 }{\color{Red} p>1 },使得{\color{Red} f(x)\leq \frac{M}{x^{p}} },则{\color{Red} \int_{a}^{+\propto }f(x)dx}上界{\color{Red} \leq -\frac{M}{1-p}a^{1-p}}{\color{Red} \int_{a}^{+\propto }f(x)dx}收敛,存在{\color{Red} p\leq 1 },使得{\color{Red} f(x)\geq \frac{M}{x^{p}} }{\color{Red} \int_{a}^{+\propto }f(x)dx= +\propto },发散

{\color{Red} a>0},且{\color{Red} f(x)\geq 0}  ,根据(比较审敛),若存在{\color{Red} p>1 }{\color{Red} \because f(x)\leq \frac{M}{x^{p}}\therefore \lim_{x\to +\propto }x^{p}f(x)=M}{\color{Red} \int_{a}^{+\propto }f(x)dx}收敛,

存在{\color{Red} p\leq 1 }{\color{Red} \because f(x)\geq \frac{M}{x^{p}} \therefore \lim_{x\to +\propto }x^{p}f(x)=+\propto}{\color{Red} \int_{a}^{+\propto }f(x)dx}发散

{\color{Red} \int_{a}^{+\propto }|f(x)|dx}收敛,{\color{Red} \int_{a}^{+\propto }f(x)dx}收敛 证明:{\color{Red} \varphi (x)=\frac{1}{2}(f(x)+|f(x)|)\leq |f(x)|}{\color{Red} \varphi (x)}收敛,{\color{Red} \int_{a}^{+\propto }f(x)dx=2\int_{a}^{+\propto }\varphi (x)dx-\int_{a}^{+\propto }f|(x)|dx},故收敛

无界函数的反常积分:积分区间存在间断点,又叫瑕积分记为{\color{Red} \int_{a }^{b}f(x)dx=\lim_{t \to b }\int_{a}^{t}f(x)dx }(积分区间上下界均可为{\color{Red} t})

敛散方法

{\color{Red} f(x)}{\color{Red} (a, b]}连续且{\color{Red} f(x)\geq 0}{\color{Red} x= a}{\color{Red} f(x)}瑕点

1 在该区间极限存在收敛,不存在则发散

特别的,{\color{Red}\int_{a}^{b }\frac{dx}{(x-a)^{p}}dx}{\color{Red}(q<1)\int_{a}^{b }\frac{dx}{(x-a)^{p}}dx=\frac{1}{1-q}(b-a)^{1-q}}收敛,{\color{Red}(q\geq 1)\int_{a}^{b }\frac{dx}{(x-a)^{p}}dx=+\propto }发散,可推出下列敛散法

{\color{Red} (a\leq x\leq b)}根据(比较审敛),若存在{\color{Red} M>0 }{\color{Red} q<1 },使得{\color{Red} f(x)\leq \frac{M}{(x-a)^{p}} }{\color{Red} \int_{a }^{b}f(x)dx}上界{\color{Red}\leq \frac{1}{1-q}(b-a)^{1-q}},则{\color{Red} \int_{a }^{b}f(x)dx}收敛,存在{\color{Red} N>0 }{\color{Red} f(x)\geq \frac{M}{(x-a)} }{\color{Red} \int_{a }^{b}f(x)dx=+\propto },发散

3 根据(比较审敛),若存在{\color{Red} 0<q<1 }{\color{Red} \because f(x)\leq \frac{M}{(x-a)^{p}}\therefore \lim_{x\to a+ }(x-a)^{q}f(x)}存在,{\color{Red} \int_{a }^{b}f(x)dx}收敛,

{\color{Red} \lim_{x\to a+ }(x-a)f(x)=+\propto },,{\color{Red} \int_{a }^{b}f(x)dx}发散

{\color{Red} \Gamma }函数

{\color{Red} \Gamma(s)=\int_{0}^{+\propto }e^{-x}x^{s-1}dx(s>0)}{\color{Red} \Gamma(s) }收敛           

1 递推公式 {\color{Red} \Gamma(s+1)=s\Gamma (s) (s>0)}

可推出{\color{Red} \Gamma(n+1)=n!}

2 当{\color{Red} s \to 0^{+} \Gamma (s)\to +\propto }

3 余元公式{\color{Red} \Gamma(s)\Gamma (1-s)=\frac{\pi }{sin\pi s}(0<s<1) }

{\color{Red} \int_{0}^{+\propto }e^{-u^{2}}du=\frac{\sqrt{\pi }}{2}},在概率论常用

旋转体的体积

{\color{Red} V=\int_{a}^{b}\pi [f(x)]^{2}dx }

平行截面面积已知的立体体积

{\color{Red} V=\int_{a}^{b}A(x)dx },{\color{Red} A(x) }为底面积

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值