高数草稿-微分方程与差分方程

本文仅是个人理解,如有谬误,请望矫正

微分方程常数个数=阶数

一阶微分方程的解法

1 可分离变量{\color{Red}[ P(x,y)dx+Q(x,y)dy=0]=[\frac{dy}{dx}=-\frac{P(x,y)}{Q(x,y)}]}

2 齐次方程 {\color{Red} \frac{dy}{dx}=\varphi (\frac{y}{x})}{\color{Red}( \frac{y}{x}=u)\rightarrow (\frac{dy}{dx}=u+x\frac{du}{dx}=\varphi (x))\rightarrow (\int \frac{du}{\varphi(u)-u}=\int \frac{dx}{x})\rightarrow (\tfrac{y}{x}=u)}

3 可化为齐次的方程 

{\color{Red}( \frac{dy}{dx}=f(\frac{ax+by+c}{a_{1}x+b_{1}y+c_{1}}))\rightarrow\begin{Bmatrix} ax+by+c=0\\ a_{1}x+b_{1}y+c_{1}=0 \end{Bmatrix} \rightarrow {x,y}}有解时,设{\color{Red} X=x+h,Y=y+k}{\color{Red} \frac{dY}{dX}=}{\color{Red}\frac{aX+bY}{a_{1}X+b_{1}Y}},成为齐次方程,按照2方法求解

{\color{Red}( \frac{dy}{dx}=f(\frac{ax+by+c}{a_{1}x+b_{1}y+c_{1}}))\rightarrow\begin{Bmatrix} ax+by+c=0\\ a_{1}x+b_{1}y+c_{1}=0 \end{Bmatrix} \rightarrow {x,y}}无解时,设{\color{Red}(u=x+y)\rightarrow (\frac{du}{dx}=1+\frac{dy}{dx})},可分离变量方程

一阶线性微分方程

齐次线性方程

{\color{Red} \frac{dy}{dx}+P(x)y=0}通解{\color{Red} y=Ce^{-\int P(x)dx}(C=\pm e^{c})}

非齐次线性方程

{\color{Red} \frac{dy}{dx}+P(x)y=Q(x)}

常数变易法:设{\color{Red} C\rightarrow u(x) },通解{\color{Red} (\frac{dy}{dx}=Ce^{-\int P(x)dx}+e^{​{-\int P(x)dx}}\int Q(x)e^{\int P(x)dx}dx)\rightarrow (y=Ce^{-\int p(x)dx}+e^{\int -p(x)dx}\int Q(x)e^{\int p(x)dx}dx)}

{\color{Red} \frac{dy}{dx}+ay=Q(x)}

微分算子法:我们记{\color{Red} D=\frac{d}{dx}}为微分算子,通解{\color{Red} y=\frac{1}{D-a}Q(x)\rightarrow e^{ax}\int Q(x)e^{-ax}dx}

伯努利方程

{\color{Red} }{\color{Red} \frac{dy}{dx}+P(x)y=Q(x)y^{n}(n\neq 0\neq 1)}

{\color{Red}y^{-n} \frac{dy}{dx}+P(x)y^{1-n}=Q(x)},设{\color{Red} z=y^{1-n}}{\color{Red} \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx}},即{\color{Red} \frac{dz}{dx}+(1-n)P(x)z=(1-n)y^{-n}Q(x)}即可求出通解

可降阶的高阶微分方程

{\color{Red} y^{n}=f(x)}可连续积分

{\color{Red} y''=f(x,y')},设{\color{Red} (y'=p) \to( y''=\frac{dp}{dx}=p')\to(p'=f(x,p)) \rightarrow(p=\varphi (x,C_{1}))\rightarrow (\frac{dy}{dx}=\varphi (x,C_{1}))},通解{\color{Red} y=\int \varphi (x,C_{1})dx+C_{2}}

{\color{Red} (y''=f(y,y'))\rightarrow (y''=\frac{dp}{dx}=\frac{dp}{dy}*\frac{dy}{dx}=p\frac{dp}{dy})\rightarrow (p\frac{dp}{dy}=f(y,p))},通解为{\color{Red} y'=p=\varphi (y,C_{1})},{\color{Red} y''=f(y,y')}通解为

{\color{Red} \int \frac{dy}{\varphi (y,C_{1})}=x+C_{2}}

高阶线性微分方程

n阶齐次方程{\color{Red} y=y^{n}+a_{1}(x)y^{n-1}+...+a_{n-1}(x)y'+a_{n}(x)y=0}

特解为{\color{Red} y_{1}(x),y_{2}(x),y_{3}(x)...y_{n}(x)},其通解{\color{Red} y=C_{1}y_{1}(x)+C_{2}y_{2}(x)+...C_{n}y_{n}(x)\rightarrow (C_{1}+C_{2}+C_{3}+...C_{n})\neq 0}称为线性无关

常系数齐次线性微分方程

二阶:{\color{Red} y''+P(x)y'+Q(x)y=0} 特解为{\color{Red} y*=e^{rx} \to y*'=re^{rx}\to y*''=r^{2}e^{rx} },则{\color{Red} y''+P(x)y'+Q(x)y=(r^{2}+pr+q)e^{rx}},特征方程{\color{Red} r^{2}+pr+q=0}

有如下情况

{\color{Red} r^{2}+pr+q=0}{\color{Red} r_{1},r_{2}}{\color{Red} y''+P(x)y'+Q(x)y=0}通解
{\color{Red} r_{1}\neq r_{2}}{\color{Red} y=C_{1}e^{r_{1}x}+C_{2}e^{r_{2}x}}
{\color{Red} r_{1}= r_{2}}{\color{Red} y=(C_{1}+C_{2})e^{r_{1}x}}
{\color{Red} r_{1,2}=\alpha \pm \beta i }{\color{Red} y=(C_{1}cos\beta x+C_{2}sin\beta x)e^{\alpha x}}

n阶常系数齐次微分方程

{\color{Red} y^{n}+P_{1}y^{n-1}+P_{2}y^{n-2}+...P_{n-1}y'+P_{n}y=0}

微分算子法(完整算法需要牢记不同类型多项式的运算法则)

{\color{Red} Dy=\frac{dy}{dx}\rightarrow D_{n}y=\frac{d^{n}y}{dx^{n}}},n阶常系数齐次微分方程={\color{Red} (D^{n}+p_{1}D^{n-1}+p_{2}D^{n-2}+p_{n-1}D+p_{n})y=0}{\color{Red} L(D)=(D^{n}+p_{1}D^{n-1}+p_{2}D^{n-2}+p_{n-1}D+p_{n})\rightarrow L(D)_{y}=0}

{\color{Red} y=e^{rx}\rightarrow De^{rx}=re^{rx}\rightarrow...D^{n}e^{rx}=r^{n}e^{rx} \rightarrow L(D)e^{rx}=L(r)e^{rx}},即{\color{Red} L(r)e^{rx}=0\rightarrow L(r)=0\rightarrow (r^{n}+p_{1}r^{n-1}+p_{2}r^{n-2}+...p_{n-1}r+p_{n}=0)}为特征方程,则{\color{Red} y=e^{rx}}是特解

有如下情况

特征根通解
单实数根{\color{Red} r}一项:{\color{Red} Ce^{rx}}
一对单复根{\color{Red} r_{1,2}=\alpha \pm \beta i}两项:{\color{Red} e^{\alpha x}(C_{1}cos\beta x+C_{2}sin\beta x)}
{\color{Red} k}个相同根{\color{Red} r}{\color{Red} k}项:{\color{Red} e^{r x}(C_{1}+C_{2}x+C_{3}x^{k-3}...C_{1}x^{k-1})}
一对{\color{Red} k}个相同根{\color{Red} r_{1,2}=\alpha \pm \beta i}

2{\color{Red} k}项:

 

{\color{Red} e^{\alpha x}[(C_{1}+C_{2}x+C_{3}x^{k-3}...C_{k}x^{k-1})cos\beta x+(C'_{1}+C'_{2}x+C'_{3}x^{k-3}...C'_{k}x^{k-1})sin\beta x]}

 

常系数非齐次线性微分方程(解=通解+特解)

二阶:{\color{Red} y''+P(x)y'+Q(x)y=f(x)}

常见两种形态1{\color{Red}f(x)=e^{\lambda x}P_{m}(x)\rightarrow (P_{m}(x)=a_{0} x^{m}+a_{1}x^{m-1}+...+a_{m-1}x+a_{m})}

                      2{\color{Red}f(x)=e^{\lambda x}[P_{l}(x)cos\omega x+Q_{n}(x)sin\omega x]}

常用解法

1 常数变易法(知道通解时可用)

2待定系数法求解(高阶可用)

  2.1:{\color{Red}f(x)=e^{\lambda x}P_{m}(x)}

解法的证明:设特解依次{\color{Red}y*=e^{\lambda x}R(x)\rightarrow y'*\rightarrow y''*}带入二阶非齐次方程可得到{\color{Red}R''(x)+(2\lambda +p)R'(x)+(\lambda ^{2}+p\lambda +q)R(x)=P_{m}(x)},观察系数

(1)若{\color{Red}\lambda }不是特征方程根,即{\color{Red}e^{\lambda x\neq }e^{rx}},则{\color{Red}\lambda ^{2}+p\lambda +q=0}不成立,要等式恒成立则{\color{Red}R_{m}(x)\rightarrow P_{m}(x)}

(2)若{\color{Red}\lambda }是特征方程单根,则{\color{Red}\lambda ^{2}+p\lambda +q=0}成立但{\color{Red}2\lambda +p\neq 0},要等式恒成立则{\color{Red}R'(x)\rightarrow P_{m}(x)\rightarrow R(x)=xR_{m}(x)}

(3)若{\color{Red}\lambda }是特征方程重根,则{\color{Red}\lambda ^{2}+p\lambda +q=0}{\color{Red}2\lambda +p= 0},要等式恒成立则{\color{Red}R''(x)\rightarrow P_{m}(x)\rightarrow R(x)=x^{2}R_{m}(x)}

故特解{\color{Red}y*=x^{k}e^{\lambda x}R_{m}(x)},其中{\color{Red}k}按(1),(2).(3)情况取0,1,2,{\color{Red}R_{m}(x)}{\color{Red}P_{m}(x)}同次多项式,{\color{Red}R_{m}(x)}的系数可通过特解带入原方程对比{\color{Red}P_{m}(x)}求得

  2.2:{\color{Red}f(x)=e^{\lambda x}[P_{l}(x)cos\omega x+Q_{n}(x)sin\omega x]}

 首先我们来看三个麦克劳林公式

{\color{Red}e^{x}=1+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}...}

{\color{Red}cosx=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}...}

{\color{Red}sinx=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}...}

我们变换{\color{Red}e^{\pm ix}=1\pm \frac{ix}{1!}-\frac{x^{2}}{2!}\mp \frac{ix^{3}}{3!}+\frac{ix^{4}}{4!}...\rightarrow (e^{\pm ix}=cosx\pm isinx)\rightarrow sinx=\frac{1}{2i}(e^{ix}-{e^{-ix}})\rightarrow cosx=\frac{1}{2}(e^{ix}+{e^{-ix}})) }

称为欧拉公式,则{\color{Red}f(x)=e^{\lambda x}[P_{l}(x)cos\omega x+Q_{n}(x)sin\omega x]=(\frac{P_{l}}{2}-\frac{Q_{n}i}{2})e^{(\lambda +wi)x }+(\frac{P_{l}}{2}+\frac{Q_{n}i}{2})e^{(\lambda -wi)x }}、则特解为

{\color{Red}y*=x^{k}e^{\lambda x}[R_{m}^{1}(x)cos\omega x+R_{m}^{1}(x)sin\omega x]},其中{\color{Red}k}的取值按{\color{Red}(\lambda +\omega i)\cap (\lambda -\omega i)}不是特征方程根,单根取0或1(可推广到n阶)

3 微算子法(适合高阶)

{\color{Red} F(D)=(D^{n}+p_{1}D^{n-1}+p_{2}D^{n-2}...+p_{n-1}D+p_{n})\rightarrow (D^{n}+p_{1}D^{n-1}+p_{2}D^{n-2}...+p_{n-1}D+p_{n})y=f(x)\rightarrow y*=\frac{1}{F(D)}f(x)}

{\color{Red}f(x) }{\color{Red}y* }备注
{\color{Red}e^{kx} }{\color{Red}\frac{1}{F(k)}{e^{kx}}(F(k)\neq 0) }{\color{Red}(F(k)= 0) \rightarrow x^{m}\frac{1}{F^{(m)}(k)}e^{kx}},其中k是{\color{Red}F(k) }是的m重根,{\color{Red} F^{(m)} }是求导阶数
{\color{Red}sinax\cap cosax }{\color{Red}\frac{sinax}{F(-a^{2})}\cap \frac{cosax}{F(-a^{2})}(F(-a^{2})\neq 0) }{\color{Red}(F(k)= 0) \rightarrow x^{m}\frac{1}{F^{(m)}(k)}sinax\cap x^{m}\frac{1}{F^{(m)}(k)}cosax}
{\color{Red}e^{kx}u(x) }{\color{Red}\frac{1}{F(D+k)}{e^{kx}u(x)} }{\color{Red}\frac{1}{F(D_{1})F(D_{2})}f(x)=\frac{1}{F(D_{1})}[\frac{1}{F(D_{2})}f(x)]}{\color{Red}\frac{1}{(D-k)^{m}}f(x)=e^{k}\frac{1}{D^{m}}[e^{-k}f(x)]}
{\color{Red}a_{0}x^{m}+a_{1}x^{m-1}+..a_{m-1}x+a_{m}}

{\color{Red} (p_{n}\neq 0)\frac{1}{F(D)}f(x)=Q(D)f(x)}

{\color{Red} (p_{n}=0)\frac{1}{F(D)}f(x)=\frac{1}{D}Q(D)f(x)}

{\color{Red} Q(D) }{\color{Red} \frac{1}{D} }多项式除法的商,其中{\color{Red} D*a=0 }{\color{Red}a }是常数

欧拉方程

{\color{Red}x^{n}y^{n}+p_{1}x^{n-1}y^{(n-1)}+...p_{n-1}xy'+p_{n}y=f(x)}

{\color{Red}x=e^{t}\rightarrow t=lnx} 则

{\color{Red}(\frac{dy}{dx}=\frac{dy}{dt}*\frac{dt}{dx}=\frac{dy}{x*dt})\rightarrow (\frac{d^{2}y}{dx^{2}}=\frac{1}{x^{2}}(\frac{d^{2}y}{dt^{2}}-\frac{dy}{dt})\rightarrow(\frac{d^{3}y}{dx^{3}}=\frac{1}{x^{3}}(\frac{d^{3}y}{dt^{3}}-3\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt})}

{\color{Red}(xy'=Dy)\rightarrow (x^ky^{(k)}=D(D-1)...(D-K+1)y)}带入欧拉方程,最后替换元

常系数线性微分方程组解法

即多元常系数线性微分方程形式

步骤1:加减消元,消去未知函数和其导数的数量,只保留一个未知函数的高阶常系数线性微分方程

       2:求解该方程  

       3:带入原方程

差分方程

线性差分方程形如{\color{Red}y_{n+k}+a_{1}(n)y_{n+k-1}+...a_{k-1}(n)y_{n+1}+a_{k}(n)y_{n}=f(n)}

一阶常系数线性差分方程

齐次:{\color{Red}y_{n+1}+ay_{n}=0\rightarrow y_{n}=C(\frac{1}{a})^n}

非齐次:{\color{Red}y_{n+1}+ay_{n}=P_{m}(n)}

  1 当a≠1 设{\color{Red}y*=B_{m}n^{m}+B_{m-1}n^{m-1}+...B_{1}n+B_{0}}带入差分方程,比较系数

  2 当a=1 设{\color{Red}y*=n(B_{m}n^{m}+B_{m-1}n^{m-1}+...B_{1}n+B_{0})}带入差分方程,比较系数

二阶常系数线性差分方程

齐次:{\color{Red}y_{n+2}+ay_{n+1}+by_{n}=0} ,设{\color{Red}y_{n}=\lambda ^{n}}当带入方程,则{\color{Red}\lambda ^{n}(\lambda ^{2}+a\lambda +b)=0\rightarrow(\lambda ^{2}+a\lambda +b)=0 }为特征方程,情况如

特征根通解
{\color{Red}\lambda_{1}\neq \lambda _{2} }{\color{Red}y_{n}=C_{1}\lambda _{1}^{n}+C_{2}\lambda _{2}^{n}}
一个重根{\color{Red}\lambda =-\frac{1}{2}a}{\color{Red}y_{n}=(C_{1}+C_{2}n)(-\frac{1}{2}a)^{n}}
共轭复根{\color{Red}\lambda _{1,2}=\alpha \pm\beta i }{\color{Red}y_{n}=(C_{1}cos\theta n+C_{2}sin\theta n)r^{n}}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值