高数草稿-函数极限,连续性,间断点

本文仅是在下个人理解,如有谬误,望请矫正

一 丶极限的基本定义为{\color{Red} f(x_{0})}无限{\color{Red} \rightarrow A}时,则在{\color{Red} x_{0}}{\color{Red} f(x)}的极限={\color{Red} A}

下面介绍一些求函数极限的常用方法

1 当函数在{\color{Red} x_{0}}处有定义时直接带值

2 当分数形式存在公因式可化简

3 夹逼定理 {\color{Red} f(x)\leq g(x)\leq h(x) } 且{\color{Red} limf(x)=limh(x)=A},则{\color{Red} limg(x)=A}

4 当{\color{Red} x\rightarrow \propto }时,同类型多项式中,极限等于最高次项数的系数比 ,其他项数趋近与0{\color{Red} \lim_{x \to \propto }\frac{ax^{b}+cx^{d}+ex^{f}...+g}{hx^{b}+ix^{d}+jx^{f}...+k}(b>d>f>...)=\frac{a}{h}}

5 指数形式可化为对数形式

6 两个重要极限  {\color{Red}\lim_{x\rightarrow 0}\frac{sinx}{x}=1 }   {\color{Red} \lim_{x\rightarrow \propto }(1+\frac{1}{x})^{x}=e} 或{\color{Red}\lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e }用麦克劳林公式可证

7 洛必达 适用于{\color{Red} \frac{0}{0} }{\color{Red} \frac{\propto }{\propto}}   {\color{Red}\because \lim_{\Delta x\to 0} \frac{\frac{\frac{f(x+\Delta x)-f(x)}{\Delta x}}{g(x+\Delta )-g(x)}}{\Delta x}=\lim_{\Delta x\to 0} \frac{f(x+\Delta x)-f(x)}{g(x+\Delta x )-g(x)}\therefore lim\frac{f(x)}{g(x)}=lim\frac{​{f'(x)}}{​{g}'(x)}} 

8 当{\color{Red} x\rightarrow 0}利用等价无穷小  下面几个为常用等价无穷小

{\color{Red} a^{x}\sim xlna} 

{\color{Red}arcsin(ax)\sim sin(ax) \sim (ax)}

{\color{Red}arctan(ax)\sim tan(ax) \sim (ax)}

{\color{Red} ln(1+x)\sim x}

{\color{Red} (1+ax)^{b}-1\sim x}

{\color{Red} 1-cosx\sim \frac{x^{2}}{2}}

{\color{Red}\frac{f(x)^{a}}{g(x)^{b}}}可利用泰勒形式展开为同类型函数,可化成阶数相同的形式

10 定积分{\color{Red} \lim_{\propto }\frac{1}{n}\sum_{i=1}^{n}f(\frac{i}{n})=\int_{0}^{1}f(x)dx} ,{\color{Red} \int_{0}^{1}f(x)dx}的本质是将区间分为{\color{Red} n}段,每段{\color{Red} x_{i}}={\color{Red}\frac{i}{n} },高度={\color{Red} f(\frac {i}{n})},长度{\color{Red} \Delta x_{i}=\frac{1}{n}}

11 Stolz定理 

{\color{Red} \frac{*}{\propto }}时      当{\color{Red} bn}严格单调递增且{\color{Red} \lim_{n\rightarrow \propto }b_{n}=+\propto }且 {\color{Red} \lim_{n\rightarrow \propto }\frac{a_{n+1}-a_{n}}{}{b_{n+1}-b_{n}}=L\rightarrow \lim_{n\rightarrow \propto }\frac{a_{n}}{b_{n}}=L}

{\color{Red} \frac{0}{0}}时      当{\color{Red} bn}严格单调递减趋于0且{\color{Red} \lim_{n\rightarrow \propto }a_{n}=0 } 且{\color{Red} \lim_{n\rightarrow \propto }\frac{a_{n+1}-a_{n}}{}{b_{n+1}-b_{n}}=L\rightarrow \lim_{n\rightarrow \propto }\frac{a_{n}}{b_{n}}=L} 这里的证明可用{\color{Red} L-\xi (b_{n+1}-b_{n})<a_{n+1}-a_{n}<L+\xi (b_{n+1}-b_{n}) },取{\color{Red} n=N+1\rightarrow N+2\rightarrow N+3...\rightarrow n(n>N)}累加得出

 

二 丶函数连续性是指在{\color{Red} x_{0}}处有定义且该处左右极限值相等

函数间断点分为两大类

第一类:1 可去间断点 形如分数在{\color{Red} x_{0}}处无定义的形式  但是可化简得到有定义的函数

              2 跳跃间断点 左右极限不等,如分段函数

第二类:  1 无穷间断点  函数在{\color{Red} x_{0}}处无定义,但趋近于{\color{Red} \propto }

              2 振荡间断点 函数在{\color{Red} x_{0}}处无定义,但上下有界

一致连续性

{\color{Red} f(x)}[a,b]处函数变化光滑,图像不陡峭

斜渐近线

{\color{Red} y=kx+b}{\color{Red} f(x)}的斜渐近线,则{\color{Red} k=\lim_{x \to \propto }\frac{f(x)}{x}}{\color{Red} b=\lim_{x \to \propto }[f(x)-kx]}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值