【YZOJ 1097】小叶子与无敌 / 并查集、离散化

有一个长度为 n n 的数列 ai,按顺序给定 m m 个命题,第 i 个命题由参数 li,ri,odd/even l i , r i , o d d / e v e n 构成,表示这个命题为: rij=liaj ∑ j = l i r i a j 为 奇/偶 数。
请找到一个最小的 i i ,使得第 i+1 个命题与前 i i 个命题矛盾。找不到请输出“ORZZGG”(不含引号)。
范围:n1000000 m20000 m ≤ 20000

50分暴力,用map来模拟,代码如下:

#include <bits/stdc++.h>

using namespace std;

#define R register
#define Maxn 1000005
#define Maxm 20005

int n,m;
int Lp[Maxm<<2],Rp[Maxm<<2],cntl,cntr;
bool visl[Maxn],visr[Maxn];
char str[10];

map <int,map<int,int> > lrf;

inline bool insert(R int ll,R int rr,R int va)
{
    if(lrf[ll][rr]) return (lrf[ll][rr] == va);
    lrf[ll][rr] = va;
    for (R int i=1;i<=cntr;++i) 
    {
        R int tmp=lrf[rr+1][Rp[i]];
        if(!tmp) continue;
        if(!insert(ll,Rp[i],((va-1)^(tmp-1))+1)) return 0;
    }
    for (R int i=1;i<=cntl;++i) 
    {
        R int tmp=lrf[Lp[i]][ll-1];
        if(!tmp) continue;
        if(!insert(Lp[i],rr,((va-1)^(tmp-1))+1)) return 0;
    }
    if(!visl[ll]) Lp[++cntl] = ll,visl[ll] = 1;
    if(!visr[rr]) Rp[++cntr] = rr,visr[rr] = 1;
    return 1;
}

int main()
{
    scanf("%d %d",&n,&m);
    for (R int i=1,l,r;i<=m;++i)
    {
        scanf("%d %d %s",&l,&r,str);
        if(!insert(l,r,(str[0]=='o')+1)) 
        {
            printf("%d\n",i-1);
            goto T;
        }
//      printf("%d\n",lrf[l][r]);
    }
    puts("ORZZGG");
    T:
        return 0;
}

正解:并查集+离散化
离散化之后,记 vali v a l i 为以该点为右端点的已经确定的最长区间的权值,这样记的话那么维护 vali v a l i 就是要靠右合并。
举个例子,对于两段,如下:(直接拿原来的样例吧)
a1   a2   a3   a4   a5   a6 a 1       a 2       a 3       a 4       a 5       a 6
命题依次为:

  • 1 2 even
  • 3 4 odd
  • 5 6 even
  • 1 6 even

如果我们直接维护:

  • val2=val2val1even=0 v a l 2 = v a l 2 ⊕ v a l 1 ⊕ e v e n = 0 (加上前一段的和,然后在加命题的贡献)
  • val4=val4val3odd=1 v a l 4 = v a l 4 ⊕ v a l 3 ⊕ o d d = 1
  • val6=val6val5even=0 v a l 6 = v a l 6 ⊕ v a l 5 ⊕ e v e n = 0

发现问题了吗?相邻区间根本没合并!所以我们要在初始时把区间右端点统一+1(或者左端点统一-1),来让相邻的区间有公共点,这样才能合并。

  • 1 3 even
  • 3 5 odd
  • 5 7 even
  • 1 7 even

然后像上面那样:

  • val3=val3val1even=0 v a l 3 = v a l 3 ⊕ v a l 1 ⊕ e v e n = 0
  • val5=val5val3odd=1 v a l 5 = v a l 5 ⊕ v a l 3 ⊕ o d d = 1
  • val7=val7val5even=1 v a l 7 = v a l 7 ⊕ v a l 5 ⊕ e v e n = 1

这样才对嘛~
接下来一个命题

  • 1 7 even

我们发现在前面一连串的操作后这两个点应该已经连在一起了,因此我们应该用 带权并查集 维护这些点。然后怎样判断这个命题有没有违反规则呢?

很简单,我们已经知道了 val1 v a l 1 val7 v a l 7 ,利用前缀和思想,中间这一段的权应该等于右边减左边(由于右边是开,不包括,所以左端点不用-1)。由于异或的加减统一性,这一段的奇偶性就是 val1val7 v a l 1 ⊕ v a l 7 。接下来比一比有没有相同就行了。
要特别注意的是,带权并查集的合并、路径压缩这样的东西要小心,要按照贡献的顺序合并,不能当做普通并查集。
代码见下:

#include <bits/stdc++.h>

using namespace std;

#define R register
#define Maxn 1000005
#define Maxm 20005
#define Map(_a) lower_bound(poi+1,poi+len+1,_a)-poi

int n,m,ll[Maxm],rr[Maxm],val[Maxm],val1[Maxm<<1];
char str[10];
int poi[Maxm<<1],len,fa[Maxm<<1];
int find(R int x)
{   
    if(fa[x] == x) return x;
    R int tmp=find(fa[x]); val1[x]^=val1[fa[x]]; return fa[x]=tmp;
}
int main()
{
    scanf("%d %d",&n,&m);
    for(R int i=1;i<=m;++i) 
    {
        scanf("%d %d %s",&ll[i],&rr[i],str); ++rr[i];
        poi[i<<1] = rr[i],poi[(i<<1)-1] = ll[i],val[i]=(str[0]=='o');
    }
    sort(poi+1,poi+(m<<1)+1);
    len = unique(poi+1,poi+(m<<1)+1)-(poi+1);
    for (R int i=1;i<=len;++i) fa[i]=i;
    for (R int i=1;i<=m;++i)
    {
        R int u=Map(ll[i]),v=Map(rr[i]);
        find(u),find(v);
        if(fa[u]^fa[v]) val1[fa[u]]=(val1[u]^val1[v]^val[i]),fa[fa[u]]=fa[v];
        else 
        {
            if(val1[u]^val1[v]^val[i]) 
            {
                printf("%d\n",i-1);
                goto T;
            } 
        }
    }
    puts("ORZZGG");
    T:return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值