2024全国大学生数学建模竞赛(国赛)全题目完整建模全解全析

24国赛全解全析:

即将进行完善补充~,我们团队会在群中 579606602 进行最先一步的更新 文末处可以直接获取哦!(文中前面的几张图片是我往期作品中的部分内容和可视化图片哦,可视化内容非常精美!)

24国赛赛前准备:

论文中好的可视化内容至关重要 这里先分享一些国赛数学建模中的常用的可视化内容

并分享我之前在比赛中的部分回答给大家作为参考~

数学建模中的可视化分析是一个重要的环节,它帮助研究者和观众更好地理解数据和模型的结果。以下是一些进阶的可视化分析方法和算法,以及相应的Python代码示例:

蒙特卡罗算法

算法介绍:蒙特卡罗算法是一种基于概率和随机性的方法,通过生成大量随机样本来模拟复杂系统的行为或计算数值解。它不依赖于严格的解析解,而是通过随机采样来估计问题的结果。例如,在估计圆周率π的值时,可以在一个正方形内随机生成点,然后计算落在内切圆内的点的比例,利用这个比例估计π的值。蒙特卡罗算法广泛应用于金融风险分析、物理学中的粒子行为模拟、复杂系统的概率分析等领域.

算法示例:

我们可以使用蒙特卡罗算法来估计三维图形的体积。下面是一个简单的Python程序,它使用蒙特卡罗算法来估计一个球体的体积,并使用Matplotlib库进行三维可视化。

import random
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

def monte_carlo_volume(n):
    count = 0
    for i in range(n):
        x = random.uniform(-1, 1)
        y = random.uniform(-1, 1)
        z = random.uniform(-1, 1)
        if x**2 + y**2 + z**2 <= 1:
            count += 1
    return (count / n) * 8

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

n = 10000
volume = monte_carlo_volume(n)
print(f"Estimated volume of the sphere: {volume:.4f}")

xs = []
ys = []
zs = []
colors = []
for i in range(n):
    x = random.uniform(-1, 1)
    y = random.uniform(-1, 1)
    z = random.uniform(-1, 1)
    if x**2 + y**2 + z**2 <= 1:
        xs.append(x)
        ys.append(y)
        zs.append(z)
        colors.append(z)

ax.scatter(xs, ys, zs, c=colors, cmap='coolwarm', marker='o')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')

plt.show()
  • 程序首先定义了一个名为monte_carlo_volume的函数,该函数使用蒙特卡罗算法来估计球体的体积。
  • 然后,程序使用monte_carlo_volume函数来估计球体的体积,并将结果打印到控制台上。
  • 接下来,程序使用Matplotlib库创建一个3D散点图,该图显示了球体的随机采样点,并根据每个点的z坐标值进行颜色渐变。

可视化效果如下:

部分依赖分析图(Partial Dependence Plot)

部分依赖分析图(Partial Dependence Plot,简称PDP)是一种用于解释复杂机器学习模型的可视化工具。PDP可以帮助我们理解一个或两个特征对模型预测结果的影响,而忽略掉其他特征的影响。这种分析对于提高模型的透明度和可解释性非常有价值。

主要特点和用途

1. 展示特征影响:PDP显示了在保持模型中所有其他特征固定的情况下,一个特征(或两个特征的交互)对预测结果的平均影响。

2. 可解释性:对于复杂的模型(如随机森林、梯度提升机等),PDP帮助解释单个特征如何影响模型的预测,提高了模型的可解释性。

3. 非线性关系和交互效应:PDP特别适合揭示特征与预测目标之间的非线性关系,以及不同特征之间的交互效应。

工作原理

PDP通过对数据集中的特定特征进行多次采样,并保持其他特征不变,然后计算模型对这些样本的预测平均值来生成。

PDP是机器学习领域中一个非常有用的工具,尤其是在需要解释复杂模型的决策过程时。通过使用PDP,数据科学家和分析师可以更好地理解和信任他们的模型预测。图像: 部分依赖分析图的生成需要一个训练好的模型和特定的数据集,这里使用一个简单的合成数据集和一个基本的分类模型来演示。

这是一个部分依赖分析图的示例,它展示了在一个简单的合成数据集上训练的梯度提升分类器中,特征0、特征1以及它们的组合(特征0和1)对模型预测的影响。这种类型的图表非常有用于解释机器学习模型的行为,特别是在识别哪些特征对模型预测最有影响时。

生成这个图表的Python代码如下:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.inspection import plot_partial_dependence
from sklearn.datasets import make_classification

# 创建合成数据集
X, y = make_classification(n_samples=100, n_features=5, random_state=42)

# 训练梯度提升分类器
clf = GradientBoostingClassifier(n_estimators=50, random_state=42).fit(X, y)

# 绘制部分依赖图
features = [0, 1, (0, 1)]
plot_partial_dependence(clf, X, features, grid_resolution=20)

# 显示图形
plt.suptitle('Partial Dependence Plots')
plt.show()

国赛的进阶可视化图表:成对关系图

成对关系图是一种可视化技术,用于显示数据集中每个变量之间的关系。它通常用于探索数据集中的相关性和分布情况。成对关系图可以用于许多不同的应用程序,例如数据分析、生物学、金融等领域。

下面是一个简单的Python程序,它使用Seaborn库创建一个成对关系图,该图显示了Iris数据集中每个变量之间的关系: iris数据集是一个经典的机器学习数据集,用于分类和聚类等任务。它包含了150个样本,每个样本有四个特征和一个标签。特征是鸢尾花的萼片和花瓣的长度和宽度,单位是厘米。标签是鸢尾花的三个品种之一:山鸢尾、变色鸢尾和维吉尼亚鸢尾。这个数据集是由英国统计学家和生物学家Fisher在1936年发表的论文中提出的,是最早用于评估分类方法的数据集之一。iris数据集在统计学和机器学习领域都有广泛的应用和影响,被认为是一个简单而优美的数据集。

这个程序使用Seaborn库创建一个成对关系图,该图显示了Iris数据集中每个变量之间的关系。程序使用sns.load_dataset函数加载Iris数据集,并使用sns.pairplot函数创建一个成对关系图。

import seaborn as sns
import matplotlib.pyplot as plt

iris = sns.load_dataset("iris")

sns.pairplot(iris, hue="species", markers=["o", "s", "D"])

plt.show()

成对关系图的应用场景包括但不限于以下几个方面:

  1. 数据分析:成对关系图可以用于显示数据集中每个变量之间的关系,帮助数据分析人员更好地理解数据。
  2. 生物学:成对关系图可以用于显示基因表达数据的密度和分布情况,帮助生物学家更好地理解基因表达数据。
  3. 金融:成对关系图可以用于显示股票价格的密度和分布情况,帮助投资者更好地理解股票市场。

2024年美赛C题(美国大学生数学建模竞赛)机理建模+蒙特卡洛模拟 完整建模精品文章!

往期回答:2024年美赛C题(美国大学生数学建模竞赛)机理建模+蒙特卡洛模拟

C

2024 MCM 问题 C: 网球中的势能

题目翻译:

在2023年温布尔登男子单打决赛中,20岁的西班牙新星卡洛斯·阿尔卡拉兹击败了36岁的诺瓦克·德约科维奇。这场失利是德约科维奇自2013年以来在温布尔登的首次失利,也结束了这位网球史上最伟大的选手之一在大满贯赛事中的惊人连胜。 这场比赛本身就是一场惊心动魄的战斗。德约科维奇似乎注定要轻松获胜,因为他在第一盘就以6-1的比分占据了优势(赢得了7局中的6局)。

然而,第二盘却是一场紧张的对决,最终由阿尔卡拉兹在抢七中以7-6的比分获胜。第三盘则是第一盘的逆转,阿尔卡拉兹轻松以6-1的比分获胜。这位年轻的西班牙人似乎在第四盘开始时完全控制了局面,但不知怎么的,比赛又发生了转变,德约科维奇完全掌握了主动,以6-3的比分赢得了这一盘。第五盘和最后一盘开始时,德约科维奇带着第四盘的优势,但又一次发生了变化,阿尔卡拉兹获得了控制权和胜利,以6-4的比分结束了比赛。

这场比赛的数据在提供的数据集中,“match_id”为“2023-wimbledon-1701”。

你可以看到第一盘的所有得分,当时德约科维奇占据了优势,使用“set_no”列等于1。比赛中发生的令人难以置信的波动,有时是为了多个得分甚至是多个局,使得一位选手似乎具有优势的现象通常被归因于“势能”。

  • 势能的一种字典定义是“运动或一系列事件所产生的力量或力量”
  • 在体育运动中,一支球队或一名球员可能会感觉到他们在比赛/比赛中拥有势能,或者“力量/力量”,但很难衡量这种现象。此外,还不清楚比赛中的各种事件是如何创造或改变势能的(如果存在的话)。
  • 这里提供了所有2023年温布尔登男子单打比赛的每个得分数据,这些比赛是在前两轮之后进行的。你可以根据自己的判断选择包括其他球员信息或其他数据,但你必须完全记录数据来源。

使用数据来解决如下问题:

  • 开发一个能够捕捉比赛中随着得分发生的比赛流程的模型,并将其应用于一个或多个比赛。你的模型应该能够识别在比赛中的某个时刻哪位球员表现更好,以及他们表现得有多好。提供一个基于你的模型的可视化,来描述比赛流程。注意:在网球中,发球方赢得得分/局的概率要高得多。你可能希望以某种方式将这一因素纳入你的模型中。
  • 一位网球教练对“势能”在比赛中起到任何作用持怀疑态度。相反,他认为比赛中的波动和一方球员的连续成功是随机的。使用你的模型/指标来评估这一说法。
  • 教练们很想知道是否有一些指标可以帮助确定比赛的流程何时即将从有利于一方球员转变为有利于另一方球员。
    • 使用至少一场比赛提供的数据,开发能够预测比赛中这些波动的模型。哪些因素似乎最相关?(若有的话)?
    • 鉴于过去比赛中“势能”波动的差异,你如何建议一位球员在与不同的球员进行新的比赛时做好准备?
  • 在另一场或多场比赛上测试你开发的模型。你预测比赛中的波动有多好?如果模型在某些时候表现不佳,你能否找出可能需要在未来的模型中包括的一些因素?你的模型对其他比赛(如女子比赛)、锦标赛、球场表面和其他运动(如乒乓球)有多大的普适性?
  • 用不超过25页的报告呈现你的发现,并包括一份一到两页的备忘录,总结你的结果,并为教练提供关于“势能”的作用以及如何准备球员在网球比赛中应对影响比赛流程的事件的建议。

注意:对于一个完整的MCM提交,没有特定的最低页数要求。你可以使用最多25页的空间来展示你的解决方案和任何你想要包括的额外信息(例如:图画、图表、计算、表格)。接受部分解决方案。我们允许谨慎地使用AI,如ChatGPT,尽管不需要使用AI来解决这个问题。如果你选择使用生成式AI,你必须遵守COMAP的AI使用政策。这将导致你必须在你的PDF解决方案文件的末尾添加一个额外的AI使用报告,这不计入你的解决方案的25页的总页数。

提供的文件:

  • Wimbledon_featured_matches.csv – 2023年温布尔登男子单打第二轮后的比赛数据集。
  • data_dictionary.csv – 数据集的描述。
  • data_examples – 帮助理解提供的数据的例子。

术语表

大满贯:网球中的大满贯是指在一年内在一个项目中赢得四个主要冠军的成就。四个大满贯锦标赛是澳大利亚公开赛、法国公开赛、温布尔登和美国公开赛,每个锦标赛都持续两周。

术语表中的关键术语/概念:

  • 计分:
  • 比赛:五盘三胜制(温布尔登男子单打比赛)
  • 盘:一组局;6局赢得一盘,但球员必须领先两局,直到盘分达到6-6时
  • 局分计算:
  • 0分 = Love
  • 1分 = 15
  • 2分 = 30
  • 3分 = 40
  • 平分 = All(例如,“30 all”)
  • 40 – 40 = Deuce(球员赢得相同的分数,至少各3分)
  • 发球方赢得平分 = Ad-in(或“advantage in”)
  • 接发球方赢得平分 = Ad-out
  • 发球:球员轮流在每一局担任“发球方”(即打出每一分的第一球的球员)和“接发球方”。在职业网球中,发球方往往有很大的优势。每一分,球员有两次发球的机会(将球打入“发球区”)。如果两次发球都没有打入,就是“双误”,接发球方就赢得这一分。
  • 破发 - 当接发球方赢得一局。
  • 破发点 - 如果接发球方赢得这一分,他们就会赢得这一局。
  • 保发 - 当发球方赢得这一局。
  • 抢七局:每一盘在一个球员赢得6局的情况下结束,只要他们领先至少两局(例如,6 - 4)。如果没有,比赛就继续进行,直到达到6 - 6的平局。此时,就要打抢七局。在温布尔登,抢七局是先得7分(必须领先两分)赢得,除了比赛的第五盘,是先得10分(必须领先两分)赢得。
  • 休息/换场:比赛开始后,第一局结束时选手交换场地,之后每两局交换一次。从第三局开始,每次换场时允许休息90秒。在抢七局中,每六分交换一次场地。每盘结束后,选手至少休息2分钟。比赛中允许一次医疗暂停和一次如厕。

问题重述:

题目的关键信息如下:

  • 题目的背景是2023年温网男单决赛,西班牙新星阿尔卡拉兹击败了德约科维奇,这场比赛出现了多次势头的转换,有时被称为“势头”。
  • 题目的目的是使用提供的数据,建立一个模型来捕捉比赛的流程,分析“势头”的存在与否,预测比赛的转折点,以及给教练提供一些建议。
  • 题目的要求是:
    • 开发一个模型,能够识别哪个选手在比赛中表现更好,以及他们的优势有多大,并提供一个可视化的方式来展示比赛的流程。
    • 使用模型来评估一个教练的观点,他认为“势头”在比赛中没有任何作用,比赛的波动是随机的。
    • 使用至少一场比赛的数据,开发一个模型,能够预测比赛的转折点,即哪些事件会导致比赛的流程从一个选手转向另一个选手,并分析哪些因素与之相关。
    • 测试模型在其他比赛中的表现,评估模型的准确性和泛化性,以及模型是否适用于其他比赛(如女单)、其他锦标赛、其他场地和其他运动(如乒乓球)。
    • 产生一个不超过25页的报告,包含模型的发现和结论,并包含一个一到两页的备忘录,总结模型的结果,并给教练提供一些关于“势头”的作用,以及如何训练选手应对比赛中影响比赛流程的事件的建议。报告还应包含一个摘要页、目录、参考文献和AI使用报告(如果使用了AI的话)。

对文章的问题进行解释:

  • 你需要根据2023年温网男单决赛的数据,建立一个数学模型,来分析和预测网球比赛中的“势头”现象,即比赛中选手的优势和劣势的变化。
  • 你需要用你的模型来回答以下问题:
    • 如何用图形的方式表示比赛的流程,以及哪个选手在什么时候占据上风?
    • “势头”是否真的存在,还是只是随机的波动?
    • 有没有什么指标或因素可以帮助判断比赛的流程即将发生转变?
    • 你的模型在其他比赛中是否有效,是否可以推广到其他情况?

赛题分析

背景:网球比赛中的动量问题,即比赛中选手的优势和劣势的变化,以及影响比赛流程的事件。

难点:主要在于理解网球比赛中的很多相关概念。以及如何量化和捕捉动量的概念,如何判断比赛的转折点,以及如何评估动量的影响因素。

对上述网球比赛相关概念的通俗解释如下:

  • 比赛:网球比赛分为多个,每个盘由多个组成。在温布尔登男子单打比赛中,每个比赛由五个盘组成,谁先赢得三个盘就赢得了比赛。
  • :每个盘由六个局组成,但是必须要有两个局的差距才能赢得盘。如果双方打成6-6平局,就要进行抢七,即谁先得到7分(并且有两分的差距)就赢得了盘。在温布尔登比赛中,第五盘的抢七要求是谁先得到10分(并且有两分的差距)。
  • :每个局由多个组成,每个分的得分方式是:0分(Love)、15分、30分、40分。如果双方都得到40分,就称为平分(Deuce),此时必须要有两分的差距才能赢得局。如果发球方赢得了平分后的第一分,就称为优势发球(Ad-in),如果接球方赢得了平分后的第一分,就称为优势接球(Ad-out)。
  • 发球:每个局由一方轮流发球,发球方有两次发球机会,如果两次都发球失误,就称为双误(Double Fault),对方就得到一分。在网球中,发球方通常有较大的优势,因为他们可以控制球的速度和方向。
  • 破发:当接球方赢得了一个局,就称为破发(Breaking Serve)。如果接球方有机会赢得一个局,就称为破发点(Break Point)。如果发球方赢得了一个局,就称为保发(Holding Serve)。
  • 换场:每个局结束后,双方要换场,即从对方的场地转到自己的场地。在第一局结束后,以及之后每两个局结束后,双方要换场。换场时可以休息90秒。在抢七中,每六分后要换场。每个盘结束后,双方要休息至少两分钟。双方可以申请医疗暂停和一次洗手间休息。

重点:如何建立一个合理的数学模型,能够反映比赛的流程,分析动量的存在与否,预测比赛的转折点,以及给教练提供一些建议。

可能需要应用的数学模型

    • 评价模型:可以用一些评价指标,如得分率、破发率、发球速度等,来衡量选手的表现,以及用一些综合评价方法,如层次分析法、TOPSIS法等,来比较选手的优势和劣势。
    • 预测模型:可以用一些预测方法,如时间序列分析、灰色预测法、马尔可夫预测等,来预测比赛的走势,以及用一些判别方法,如逻辑回归、支持向量机等,来判断比赛的转折点。
    • 分类模型:可以用一些分类方法,如聚类分析决策树、神经网络等,来分析比赛中的不同阶段,以及用一些关联分析方法,如Apriori算法、PageRank算法等,来分析比赛中的影响因素。
    • 优化模型:可以用一些优化方法,如线性规划、非线性规划多目标规划等,来优化选手的策略,以及用一些模拟方法,如蒙特卡罗法、遗传算法等,来模拟比赛的可能结果。


对题目数据集的解读:

Examples to Help Understand the Data Set部分是用来说明数据集中的各个列的含义和如何解读的。

例1:第五行

列名说明
match_id“2023-wimbledon-1301”这个值表示这是第三轮的第一场比赛,3表示第三轮,01表示第一场。
elapsed_time“0:01:31”这个值表示这个球开始时距离比赛开始的时间是1分31秒。1
point_no, game_no, set_no4, 1, 1这个值表示这是第一盘第一局的第四个球。2
p1_sets, p2_sets, p1_games, p2_games0, 0, 0, 0这个值表示这是比赛的第一局,所以双方都没有赢得任何盘或局。3
p1_score, p2_score15, 30这个值表示这个球打之前的比分是15(选手1)对30(选手2)。4也就是说,选手1赢得了之前的一个球,选手2赢得了之前的两个球。
server1这个值表示这个球是由选手1(阿尔卡拉斯)发球的。
serve_no1这个值表示这是第一次发球,意味着阿尔卡拉斯的第一次发球是有效的。
point_victor1这个值表示这个球是由阿尔卡拉斯赢得的。
p1_points_won, p2_points_won2, 2这个值表示阿尔卡拉斯赢得了这个球后,他在比赛中的总得分是2(之前是1)。5对于选手2,这个值保持不变,因为他输掉了这个球。
game_victor, set_victor0, 0这个值表示阿尔卡拉斯赢得了这个球后,这一局的比分是30-30(双方各赢两个球),所以没有人赢得这一局或这一盘(都是0)。6
U - AC列允许我们确定这个球是如何赢得的:
p1_winner1这个值表示阿尔卡拉斯赢得了这个球,是因为他打出了一个“无法回击”的球。
p1_ace0这个值表示这个球不是一个发球得分(因为是0)。
winner_shot_typeF这个值表示这个球是一个正手击球(而不是反手)。
p2_net_pt1这个值表示选手2(贾里)在这个球中的某个时刻靠近了网前。
p2_net_pt_won0这个值表示由于阿尔卡拉斯赢得了这个球,所以即使贾里在这个球中靠近了网前,这个值也是0。
AH - AM列都是0即使选手2赢得了这个球,这一局也不会结束,所以这个球不是一个“破发点”,这些都是0。
p1_distance_run, p2_distance_run51.108, 75.631这个值表示这个球中,每个选手跑动的距离(以米为单位)。
rally_count13这个值表示这个球中,双方总共击球的次数。
speed_mph, serve_width, serve_depth, return_depth130, BW, CTL, D这个值表示阿尔卡拉斯(发球方)以130英里/小时的速度发出了一个“身体/边线”的球(我们之前看到这是第一次发球),并且接近了划分界线。贾里(接球方)将球打回了“深”区(也就是靠近另一端的区域)。

例2:第8行到第12行
这四个点是第一局的最后四个点,它们说明了平分(“deuce”)和优势(“ad”)的概念。每一行都是比赛中的一个后续点。

描述
第8行p1_score, p2_score40, 40比分是40-40,意味着每个选手都赢得了3个前面的点(这也叫“deuce”)。1
point_victor1Alcaraz赢得了第7分(在第8行)。2
第9行p1_score, p2_scoreAD, 40由于Alcaraz赢得了前一个点(第7分),所以第8分的比分是Alcaraz的“AD”和Jarry的“40”,意味着Alcaraz多赢了一个点,如果他赢得下一个点,就可以赢得这一局。
point_victor2Jarry(选手2)赢得了第8分(在第9行)。
第10行p1_score, p2_score40, 40比分又回到了40-40(“deuce”),意味着每个选手都赢得了相同数量的前面的点,不过现在是4个点。
point_victor1Alcaraz赢得了第9分(在第10行)。3
11行p1_score, p2_scoreAD, 40Alcaraz再次获得了优势,因为他赢得了第9分。
point_victor1Alcaraz赢得了第10分(在第11行),这意味着他赢得了这一局(他现在多赢了2个点)。
第12行game_no2这是第二局的第一个点。
p1_games1Alcaraz赢得了第一局。4

例3:第51行
这场比赛的第51分说明了“破发点”(break points)的概念,即非发球方(接发球方)有机会赢得这一局的点。

描述
第51行p1_score, p2_score40, 30比分是40-30,意味着选手1(Alcaraz)领先。
server2Jarry(选手2)正在发球。
p1_break_pt1如果Alcaraz赢得这一分,他就会赢得这一局;由于他不是发球方,这是一个“破发点”。
point_victor1Alcaraz赢得了这一分(也就是赢得了这一局)。
p1_break_pt_won1Alcaraz赢得了这一局,而且他不是发球方。

C题完整建模+题目详解

这个数学建模问题要求我们分析2023年温布尔登男子单打决赛中,西班牙新星卡洛斯·阿尔卡拉兹与诺瓦克·德约科维奇之间的比赛数据。德约科维奇在第一盘以6-1轻松取胜,但随后的比赛出现了多次势头的转换,最终阿尔卡拉兹在第五盘以6-4获胜。本题目要求我们使用提供的数据集("match_id"为“2023-wimbledon-1701”)来分析比赛中的“势头”(momentum)变化。

问题重点分析:

  1. 势头的定义与量化:势头在体育比赛中通常指由一系列事件所累积的“力量”或“动力”,但它是一个抽象的概念且难以直接测量。本题目要求我们探究如何通过比赛数据来量化势头,并分析不同事件如何影响势头的变化。
  2. 数据分析:需要从2023年温布尔登男子单打比赛(除了前两轮)的每个得分点的数据中提取信息,可能需要考虑选手的其他信息或比赛数据,以便更准确地量化和分析势头。

数学模型与公式构建:

为了量化比赛中的势头,我们可以构建一个模型来评估每个得分点对于选手势头的贡献度。定义势头M_t在时间点t的量化值为:

Mt=α∑i=1tPi−β∑i=1tLi

其中:

  • Mt 表示在时间点t的势头量化值。
  • Pi 表示在时间点i赢得的分数对势头的正向贡献。
  • Li 表示在时间点i失去的分数对势头的负向贡献。
  • 和α和β 是权重参数,用于调整赢分和输分对势头的影响程度。

进一步地,可以考虑引入更复杂的因素来调整势头的计算,例如连胜点数、重要得分(如破发球点)的影响等,以及选手的体能状况、心理状况等外部因素。

势头的变化分析可以通过比较连续时间点的势头量化值的变化来进行,例如:

ΔMt=Mt−Mt−1

ΔMt 代表在连续时间点 t 和 t−1 之间势头的变化量。

通过对整场比赛的势头变化进行分析,可以探究比赛中势头的变化趋势,以及导致势头变化的关键事件。

需要注意的是,上述模型和公式是对势头量化的一种简化示例。实际应用中可能需要更复杂的统计模型和机器学习方法来准确捕捉和预测比赛中的势头变化,包括时间序列分析、回归分析等方法。

为了更深入分析这些问题,我们可以采用一种综合模型,结合多种因素来量化势头、预测比赛中的转折点,并对模型的普遍适用性进行验证。以下是对所提问题的逐一分析,以及相应的数学模型构建思路。

1. 模型构建:捕捉比赛流程

基本思路:利用时间序列分析和状态空间模型来捕捉比赛流程,并考虑球员发球权的影响。

公式: 定义Y_t为时间点t的比赛状态,X_t为影响比赛状态的因素集合,包括当前局分、发球权等。状态空间模型可表示为:

Yt=f(Xt,θ)+ϵt

f 是一个函数,表示 Xt 和模型参数 θ 对比赛状态的影响。

ϵt 表示随机误差项。

发球权因素通过增加一个二元变量 St (若当前球员发球,则为1;否则为0)加入到 Xt 中。

2. 势头的角色分析

基本思路:使用随机过程或蒙特卡罗模拟来测试势头的存在性和影响。

公式: 设 Pt 表示在时间点t球员获胜的概率,根据历史数据估计。考虑势头 Mt ,更新胜率为:

Pt′=Pt+g(Mt−1)

g 是一个函数,描述了前一时刻势头M_{t-1}对当前胜率的影响。

通过模拟比赛,分析在不同势头设定下的比赛结果分布,判断势头的实际影响。

3. 预测比赛转折点

基本思路:使用机器学习模型,如随机森林或梯度提升机(Gradient Boosting Machine, GBM),来预测比赛中的转折点。

公式: 设Z_t为二元变量,若在时间点t比赛势头即将转换,则为1;否则为0。预测模型为:

Zt=h(Xt−1,Xt−2,…,Xt−n;Φ)

h 是预测函数, Φ 为模型参数。

Xt−1,Xt−2,…,Xt−n 是前 n 个时间点的状态集合,用于捕捉转折前的模式。

4. 模型测试与普遍适用性分析

基本思路:将开发的模型应用于其他比赛数据集,通过比较预测结果与实际结果,评估模型性能。

公式: 定义预测准确率为:

正确预测的数量总预测数量Accuracy=正确预测的数量总预测数量

通过不同比赛数据集(包括女子比赛、不同场地类型等)的准确率分析,评估模型的普遍适用性。

总结

本分析提出的模型和方法需要结合实际数据进行调整和优化。模型的构建应考虑数据的可用性和质量,并通过实验验证其有效性。为了实现这一目标,建议使用高级编程语言(如Python)和相关的数据分析、机器学习库(如pandas, scikit-learn, TensorFlow等)来实现模型的开发、测试和验证。

第一题:开发一个模型,捕捉得分发生时的游戏流程,并将其应用于一场或多场比赛。

为了解决这个问题,我们可以构建一个基于时间序列的模型,这个模型将会评估比赛中的每个得分点,并考虑到发球权的优势。模型的目标是在比赛的任意时刻确定哪位选手表现更好,并量化这种表现的优势程度。

数学模型构建

我们可以构建一个简化的势头评分系统(Momentum Scoring System),该系统考虑到以下因素:

  • 得分点(Score Points):每赢得一分,增加势头分数。
  • 发球权(Serving Advantage):发球方在对换分上有更高的获胜概率,因此在发球局中获得的分数赋予更高的权重。
  • 连续得分(Consecutive Points):连续赢得得分会增加额外的势头分数,反映出比赛中的压倒性优势。

势头评分公式

设 Mt 为时间点t的势头分数, Pt 为该点获得的分数(获胜为1,失分为0), St 为发球权重(发球方为1.2,接发球方为1.0), Ct 为连续得分的加成(第一次连胜为1,之后每连胜一分加0.2),则有:

Mt=Mt−1+(Pt×St×Ct)

Python代码实现

为了实现上述模型并提供可视化,我们首先需要从数据集中提取比赛数据,然后应用模型计算每个时间点的势头分数,并最后生成势头变化的可视化图表。

关键时间匹配图

import pandas as pd
import matplotlib.pyplot as plt

# 假设已经加载了比赛数据到DataFrame `df`
# df.columns = ['match_id', 'set_no', 'point_no', 'server', 'winner', ...]

# 示例:为简化,这里假设数据已经过滤到特定比赛和发球权
# 初始化势头分数
df['momentum_score'] = 0
momentum_score = 0
consecutive_wins = 0

for index, row in df.iterrows():
    P_t = 1 if row['winner'] == row['server'] else 0
    S_t = 1.2 if row['server'] == 'player_name' else 1.0  # 假设player_name是发球方
    if P_t == 1:
        consecutive_wins += 1
    else:
        consecutive_wins = 0
    C_t = 1 + consecutive_wins * 0.2
    momentum_score += (P_t * S_t * C_t)
    df.at[index, 'momentum_score'] = momentum_score

# 可视化势头分数变化
plt.plot(df['point_no'], df['momentum_score'], label='Momentum Score')
plt.xlabel('Point Number')
plt.ylabel('Momentum Score')
plt.title('Match Momentum Flow')
plt.legend()
plt.show()

可视化解释

上述代码将生成一张图表,展示了整场比赛中势头分数的变化。图表的y轴表示势头分数,x轴表示得分点的序号。通过观察曲线的变化,我们可以直观地看到比赛中势头的流动,曲线上升表明当前发球方在增强势头,曲线下降则反映出对方在夺回比赛的控制权。

需要注意的是,这个模型是一个简化版本,实际应用中可能需要进一步考虑比赛中的其他复杂因素,比如失误次数、非强制性失误等,以及运用更高级的统计或机器学习模型来提升预测的准确性和可解释性。

第二题:一位网球教练对“气势”在比赛中起作用持怀疑态度。相反,他假设一个玩家在游戏中的波动和成功的运行是随机的。使用你的模型/指标来评估这种说法。

为了评估这位网球教练对于“势头”作用的怀疑,即比赛中的势头转换和连胜是否为随机事件,我们可以采用统计测试的方法来分析比赛数据。具体而言,我们可以使用随机过程模拟来比较实际比赛数据与随机生成的比赛结果,从而评估势头转换的随机性。

数学模型构建

我们将使用随机过程模拟假设检验的方法。首先,基于实际比赛数据计算势头得分,然后通过模拟大量随机比赛来生成势头得分的分布,最后使用统计假设检验来判断实际比赛中的势头转换是否显著不同于随机情况。

随机过程模拟

  1. 实际势头得分计算:根据前面定义的势头评分公式,计算实际比赛中每个得分点的势头得分。
  2. 随机比赛模拟:在模拟中,每个得分点的获胜者是随机确定的,考虑到发球方有更高的获胜概率,我们可以设定发球方获胜的概率稍高于接发球方。

统计假设检验

  1. 零假设(H0):比赛中的势头转换是随机的,与随机模拟的结果无显著差异。
  2. 备择假设(H1):比赛中的势头转换非随机,与随机模拟的结果有显著差异。

Python代码实现与可视化

以下是基于Python实现的模型代码示例,包括随机比赛模拟和统计假设检验的过程。

import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt

# 假设df是包含比赛数据的DataFrame
# 假设已经计算了实际比赛的势头得分并存储在'momentum_score'列

# 随机比赛模拟函数
def simulate_random_match(num_points, serve_win_prob=0.65):
    # 随机生成每个得分点的获胜方,发球方获胜概率较高
    wins = np.random.rand(num_points) < serve_win_prob
    momentum_scores = np.cumsum(wins)  # 累积胜点作为简化的势头得分
    return momentum_scores

# 实际比赛的势头得分
actual_momentum_scores = df['momentum_score']

# 模拟N次随机比赛
N = 1000
simulated_scores = [simulate_random_match(len(actual_momentum_scores)) for _ in range(N)]

# 统计检验
# 比较实际势头得分与模拟得分的分布差异
# 这里使用Kolmogorov-Smirnov test作为示例
ks_stat, p_value = stats.ks_2samp(actual_momentum_scores, np.concatenate(simulated_scores))

print(f"KS statistic: {ks_stat}, P-value: {p_value}")

# 可视化实际与模拟的势头得分分布
plt.hist(actual_momentum_scores, bins=30, alpha=0.5, label='Actual')
plt.hist(np.concatenate(simulated_scores), bins=30, alpha=0.5, label='Simulated', color='red')
plt.xlabel('Momentum Score')
plt.ylabel('Frequency')
plt.legend()
plt.title('Distribution of Momentum Scores: Actual vs. Simulated')
plt.show()

可视化解释

上述代码会输出 KS 检验的统计量和 P 值, P 值较小(例如<0.05)则拒绝零假设,表明比赛中的势头转换非随机,与随机模拟的结果有显著差异。通过可视化比较实际比赛与随机模拟比赛的势头得分分布,可以直观地观察到二者之间的差异。

请注意,这里的模拟和假设检验过程是为了说明概念而简化的。在实际应用中,可能需要更复杂的模型来精确模拟比赛过程,并进行更细致的统计分析。

第三题:利用指标差异解释问题

为了预测比赛中势头变化(即比赛流向何时从一位选手转向另一位),我们可以利用机器学习模型来分析比赛数据,识别可能的转折点指标。这些指标可以包括得分差、发球方、连续得分、重要得分(如破发点)等因素。

数学模型构建

我们构建的模型将基于以下几个步骤:

1. 特征工程:从比赛数据中提取相关特征,这些特征可能会对比赛的势头转换有影响。

2. 模型选择:选择适合的机器学习模型进行训练,如随机森林、梯度提升树(Gradient Boosting Decision Trees, GBDT)等。

3. 训练与验证:使用提供的比赛数据训练模型,并通过交叉验证等方法评估模型的性能。

特征选择

  1. 得分差(Score Differential):当前比分差异。
  2. 发球权(Serving):当前发球方,发球方通常有更高的得分概率。
  3. 连续得分数(Consecutive Points):选手连续得分的数量。
  4. 重要得分(Critical Points):如破发点、局点等关键得分。

模型预测

预测目标Y是二元变量,如果比赛流向在接下来的几个得分点内转向另一位选手,则Y=1,否则Y=0。

Python代码实现与可视化

假设我们已经从比赛数据集中提取了所需特征,并将其存储在Pandas DataFrame中。以下是使用梯度提升树(GBDT)进行模型训练和预测的示例代码。

得分关键事件匹配图

from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
import seaborn as sns

# 假设df是包含特征和目标变量的DataFrame
features = df[['score_differential', 'serving', 'consecutive_points', 'critical_point']]
target = df['swing']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)

# 训练GBDT模型
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
model.fit(X_train, y_train)

# 预测和评估
predictions = model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
print(f"Model Accuracy: {accuracy}")

# 绘制混淆矩阵
cm = confusion_matrix(y_test, predictions)
sns.heatmap(cm, annot=True, fmt="d")
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()

可视化解释

此代码首先训练了一个梯度提升树分类器来预测比赛中势头的转换点,然后计算了模型在测试集上的准确率,并通过混淆矩阵可视化了模型的预测性能。混淆矩阵提供了真正类别与模型预测类别之间的比较,帮助我们理解模型在预测比赛势头转换点上的表现。

给教练的建议

基于模型结果,我们可以向教练提供以下建议:

  • 关注特定的比赛转折点指标,如得分差、发球权利用等,这些因素可能预示着比赛流向的即将变化。
  • 训练选手识别并利用比赛中的转折点,比如在连续得分或面临重要得分时的心理准备和战术调整。
  • 分析不同对手的比赛数据,以定制化的策略应对不同的比赛情况。

请注意,模型的性能和普遍适用性需要通过更多比赛数据的测试和验证来确定,实际应用中可能需要调整模型参数和特征选择。

第四题:比赛走向预测与程序通用性验证

对于问题4,我们的目标是评估先前开发的模型在其他比赛数据上的泛化能力,并探索改进模型的可能方向。以下是解决这个问题的详细解题思路。

评估模型的泛化能力

  1. 数据准备:选取其他比赛的数据,包括不同性别的选手、不同类型的比赛、不同的场地表面,甚至是其他球类运动的数据。
  2. 特征工程:确保为这些新的数据集提取与训练模型时相同的特征。
  3. 模型测试:使用先前训练的模型对新数据集进行预测,并评估模型的性能。
  4. 性能评估:通过准确率、召回率、F1分数等指标来评估模型在新数据集上的表现。

改进模型的潜在方向

  • 更复杂的特征:考虑包括球员疲劳度、比赛关键时刻的心理压力等更复杂的特征。
  • 模型调整:根据不同类型的数据集调整模型参数,或尝试不同的机器学习算法。
  • 跨运动泛化分析模型在不同球类运动中的适用性,探索能否捕捉到跨运动中的普遍势头转换规律。

Python代码实现与可视化

以下是使用Python进行模型泛化能力测试和可视化的示例代码。

from sklearn.metrics import accuracy_score, recall_score, f1_score

# 假设我们已经加载了新比赛的数据集,并且提取了特征和目标变量
X_new = new_df[['score_differential', 'serving', 'consecutive_points', 'critical_point']]
y_new = new_df['swing']

# 使用之前训练的模型进行预测
predictions_new = model.predict(X_new)

# 评估模型性能
accuracy_new = accuracy_score(y_new, predictions_new)
recall_new = recall_score(y_new, predictions_new)
f1_new = f1_score(y_new, predictions_new)

print(f"New Dataset Accuracy: {accuracy_new}")
print(f"New Dataset Recall: {recall_new}")
print(f"New Dataset F1 Score: {f1_new}")

# 可视化模型性能
labels = ['Accuracy', 'Recall', 'F1']
scores = [accuracy_new, recall_new, f1_new]

plt.bar(labels, scores, color=['blue', 'green', 'red'])
plt.ylim(0, 1)
plt.ylabel('Score')
plt.title('Model Performance on New Dataset')
plt.show()

可视化解释

这段代码首先对一个新的数据集进行预测,然后计算了准确率、召回率和F1分数来评估模型在这个新数据集上的性能。最后,通过条形图可视化了这些性能指标。

如果模型在某些情况下表现不佳,我们可以根据性能评估结果来探索需要在未来模型中包含的新因素。比如,如果发现模型在女子比赛数据上的表现明显不如男子比赛,可能需要考虑性别特定因素的影响;如果模型在草地比赛上的准确率低于硬地比赛,可能需要探索场地表面类型对比赛势头的影响等。

通过这种方法,我们不仅能评估模型的泛化能力,还能发现潜在的改进方向,从而提高模型对不同比赛情况的适应性和预测准确性。

第五题:写出一份不超过25页的报告,包括一到两页的备忘录,总结你的结果,给教练关于“势头”的作用的建议,以及如何让球员准备好应对影响网球比赛过程的事件。

为了完成这一任务,我们需要编写一个综合报告,总结我们的发现,并为教练提供关于势头角色的建议以及如何准备选手应对比赛中影响比赛流程的事件。报告将基于之前的分析,并进一步细化。

报告结构建议

  1. 引言:简要介绍研究的背景、目的和重要性。
  2. 理论基础:讨论势头在体育比赛中的角色,以及先前研究的相关理论。
  3. 方法论
  4. 数据收集:描述使用的数据集及其来源。
  5. 特征工程:解释选择的特征及其对预测势头转换的重要性。
  6. 模型选择与开发:概述所选模型的理由,包括模型的类型、训练过程和参数调整。
  7. 结果分析
  8. 势头分析:展示模型如何捕捉比赛中的势头变化。
  9. 势头的影响:讨论势头变化对比赛结果的潜在影响。
  10. 模型泛化能力:报告模型在不同比赛、运动和条件下的测试结果。
  11. 讨论:分析模型的局限性,提出未来研究方向。
  12. 结论:总结研究发现,并强调其对教练和选手准备的实际意义。
  13. 附录:包括数据集描述、代码实现和额外的图表或表格。

模型总结与教练建议备忘录

这一部分提供给教练的建议,基于上述分析的结果。

建议摘要

  1. 势头的角色:我们的分析显示,势头确实在比赛中扮演了一个重要角色。势头的增加与选手的表现提升相关联,而势头的减少可能预示着比赛流向的转变。
  2. 势头变化的指标:某些关键指标,如连胜点、重要得分时刻的表现,可以作为势头变化的前兆。
  3. 准备选手
  4. 加强心理训练,特别是在面对势头不利时,帮助选手保持冷静和专注。
  5. 分析对手的比赛数据,识别可能引发势头转换的模式或弱点。
  6. 在训练中模拟势头转换的情况,提高选手的适应能力。

可视化例程

假设我们已经进行了势头分析,并希望展示势头对比赛结果的影响。以下是一个高对比度的可视化示例,展示势头分数与比赛结果的关系。

import matplotlib.pyplot as plt
import seaborn as sns

# 假设df是包含比赛结果和势头得分的DataFrame
sns.scatterplot(data=df, x='momentum_score', y='match_outcome', hue='winner', style='surface_type')
plt.xlabel('Momentum Score')
plt.ylabel('Match Outcome')
plt.title('Impact of Momentum on Match Outcome')
plt.legend(title='Match Info')
plt.show()

可视化解释

这个可视化展示了不同表面类型比赛中,势头得分与比赛结果之间的关系。通过颜色和标记的差异,可以清晰地看到在不同条件下势头如何影响比赛结果。例如,我们可能会发现在硬地赛事中势头对比赛结果的影响更为显著,或者某位选手能更好地利用势头来扭转比赛局势。这样的洞察可以帮助教练更好地准备选手,特别是在策略调整和心理准备方面。

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值