大家好,我是微学AI,今天给大家介绍一下大模型应用中Agent2Agent(A2A)的应用场景,以及A2A与MCP的区别和适用场景。
文章目录
一、引言
在人工智能技术飞速发展的当下,单一AI模型的能力已难以满足复杂多变的实际需求。越来越多的场景需要多个AI智能体(Agent)协同工作,彼此分工、互补、协作完成任务。无论是企业自动化、智能办公,还是智能家居、自动驾驶,智能体之间的高效通信与协作已成为AI系统演进的关键。然而,智能体间的通信长期缺乏统一标准,导致“信息孤岛”现象严重,系统集成复杂、扩展性差。在此背景下,谷歌于2025年4月在Cloud Next 2025大会上正式发布了全新的Agent2Agent (A2A) 协议,为AI智能体之间的协作提供了新的解决方案。同时,Anthropic公司提出的模型上下文协议(Model Context Protocol, MCP)也在大模型与外部数据源及工具的集成方面发挥着重要作用。本文将深入探讨A2A的原理、应用场景,分析其与MCP的区别和各自适用场景,并给出A2A的代码流程。
二、Agent2Agent(A2A)协议原理
2.1 核心架构
A2A是一个基于HTTP + JSON的AI代理通信协议,主要包含以下模块:
-
Agent Card:位于
/.well - known/agent.json
,是JSON格式的代理能力说明书,包含API端点、技能、认证方式等信息。它为能力发现、自动集成提供基础,支持智能体自治与动态编排。例如,天气智能体通过/.well - known/agent.json
暴露自身能力,包括名称、版本、描述、支持的端点(任务提交、SSE订阅)、输入参数规范(日期、地点)以及认证方式(API Key)。
-
角色模型:分为服务端和客户端。服务端提供API接口,必须实现
tasks/send
等标准方法,负责接收、处理任务请求,管理任务状态,推送结果;客户端通过HTTP调用其他代理,作为任务发起方,发现目标Agent能力,构造并发送任务请求,消费结果。 -
任务流程:任务具有完整的生命周期,状态流转为submitted(已提交)→ working(处理中)→ (input - required)(需补充输入)→ completed/failed(完成/失败)。交互单元包括消息和工件,消息由多类型Part组成(文本/文件/结构化数据),工件是任务产出的结构化结果。
-
通信机制:基础模式采用HTTP + JSON - RPC风格接口。高级功能包括实时推送(SSE协议,
tasks/sendSubscribe
)和异步通知(Webhook回调),还支持多模态,通过Part类型实现。此外,代理间可预先协商交互形式(如文本/语音/表单)。
2.2 基础框架与依赖
A2A协议本身不依赖特定的AI模型或框架,但其出现背景与大型语言模型(LLM)驱动的自治代理趋势密切相关。协议的结构借鉴了分布式系统和微服务的思想,将每个AI代理视作一个独立服务,通过标准接口通信。这意味着任何基于LLM的代理开发框架(如LangChain、LangGraph、Google的Agent Developer Kit ADK、CrewAI、Genkit等)都可以实现A2A接口,从而与其它代理协同。Google强调A2A能够适配“不透明的(opaque) ”智能体,即无需暴露内部推理过程或内存状态的代理,这对许多企业级应用至关重要,因为涉及安全和合规时,各代理更倾向通过明确定义的输入输出进行交互,而不共享内部细节。
三、Agent2Agent(A2A)协议应用场景
3.1 企业流程自动化
在大型企业中,日常业务流程往往涉及多个系统。A2A协议可用于招聘流程自动化,主Agent协调多个子Agent,分别负责筛选候选人简历、安排面试时间、进行背景调查等,使招聘流程在一个统一的工作流中顺畅衔接。在复杂企业工作流中,不同Agent分别承担法律合同条款分析、财务风险评估、报告汇总等任务,实现企业内部复杂工作流的自动化。
3.2 IT服务管理
员工通过一个Agent请求新的笔记本电脑,该Agent与负责库存检查、采购审批和设备配置的其他Agent进行交互,实现IT服务管理的自动化。
3.3 供应链管理
多个Agent分别负责需求预测、库存优化、物流调度和供应商沟通,协同优化整个供应链链条。
3.4 客户支持增强
一线客服Agent遇到无法解答的专业问题时,可通过A2A将问题转交给具备相关知识的二线专家Agent,提升客户支持的效率和质量。
3.5 个人助理智能化
用户的个人助理Agent将特定任务委托给更专业的外部Agent来完成,提升个人助理的智能化水平。
3.6 个性化学习
学习平台由多个Agent组成,通过A2A协作为用户提供定制化的学习体验,满足不同用户的学习需求。
3.7 网络运营自动化
自主Agent利用A2A进行通信,主动监控网络状态、诊断故障并自动执行修复操作,提升网络运营的自动化水平。
四、模型上下文协议(MCP)概述
4.1 MCP定义与核心概念
MCP (Model Context Protocol,模型上下文协议) 是由Anthropic于2024年11月开源的一种通信协议,旨在解决大型语言模型(LLM)与外部数据源及工具之间的无缝集成问题。它可以被形象地比喻为AI应用程序的”USB - C接口”,为AI模型连接各种数据源和工具提供了标准化的接口。MCP的核心是为LLM应用程序提供一种统一的方式来访问和处理外部数据,通过标准化AI系统与数据源的交互方式,帮助模型获取更丰富的上下文信息,从而生成更准确、更相关的响应。其核心功能包括上下文共享、工具暴露和可组合的工作流。
4.2 MCP技术架构
MCP采用客户端 - 服务器架构,通过标准化的协议实现模型与外部资源的通信。架构中包含以下核心组件:
- MCP主机(Host):发起连接的LLM应用程序(如Claude Desktop或IDE),它希望通过MCP访问数据。
- MCP客户端(Client):在主机应用程序内部维护与服务器的1:1连接的协议客户端,负责与MCP服务器建立和维护连接,发送请求并接收响应,按照MCP协议标准处理数据交换。
- MCP服务器(Server):通过标准化的Model Context Protocol暴露特定功能的轻量级程序,处理来自客户端的请求,执行特定功能或提供资源访问,按照MCP协议标准格式化响应。
- 本地数据源:MCP服务器可以安全访问的计算机文件、数据库和服务。
- 远程服务:MCP服务器可以连接的通过互联网可用的外部系统(例如,通过API)。
4.3 MCP主要功能
- 资源 (Resources):服务器提供给客户端的数据实体,可以是文件、数据库记录、API响应或内存中的对象等。客户端可以通过URI(统一资源标识符)来访问这些资源,典型用例包括读取本地文件系统中的文档、访问数据库中的记录、获取第三方API的响应数据等。
- 工具 (Tools):服务器暴露的可执行功能,客户端可以通过调用这些工具完成特定任务。工具可以执行各种操作,从简单的计算到复杂的系统交互,如执行数据库查询、调用外部API、操作文件系统(创建、修改、删除文件)、执行计算任务等。
- 提示 (Prompts):服务器提供给客户端的上下文增强信息,用于指导LLM生成特定类型的输出。这些提示可以是预定义的模板、指南或动态生成的内容,典型用例包括为特定任务提供标准化的指令、包含领域知识的上下文信息、格式化输出的模板等。
五、A2A与MCP的区别及应用场景对比
5.1 区别
- 设计目标:A2A协议的设计目标是打破不同AI代理框架和供应商之间的壁垒,实现跨平台的安全高效协作,为异构AI代理建立一个共同语言,让它们可以开箱即用地互相协作;而MCP协议主要解决的是单个代理如何使用工具和获取外部上下文的问题,即为AI模型调用API、检索数据库等提供一致的接口。
- 关注点:A2A关注的是代理与代理之间的对话与协作,强调功能发现、交互参数协商与安全协同;MCP则聚焦于模型与应用程序之间的标准化接口,确保数据传输和工具调用的安全性。
- 技术架构:A2A采用客户端 - 服务端架构,强调代理对代理的点对点交互,通过Agent Card注册能力,客户端智能体发起任务请求,远程智能体执行;MCP采用客户端 - 服务器架构,包括MCP Host、MCP Client和MCP Server,基于JSON - RPC2.0协议,连接有状态,支持能力协商。
- 交互协议:A2A借鉴JSON - RPC思想,运行于HTTP(S)通道之上,定义了丰富的交互语义,注重安全和鉴权机制,支持企业级的身份认证方案;MCP基于JSON - RPC2.0协议,通信消息以JSON表示,遵循远程过程调用模式,支持多轮请求 - 响应交互,连接建立时进行能力协商。
- 生态系统:A2A获得Atlassian、Salesforce、SAP等50多家技术公司的支持,谷歌自身为Gemini模型提供原生支持,LangChain、Autogen等开源项目正在集成;MCP由OpenAI、Anthropic、Mistral等主流大模型厂商支持,微软Azure、Meta等大型平台承诺支持,主流AI开发框架也在添加MCP支持。
5.2 应用场景对比
- MCP技术适用场景:需要访问外部资源的单一代理任务;要求与数据库、API或专业软件进行工具集成的应用场景;基于外部数据进行事实依据的内容生成;以及需要连接到后端系统的面向用户的应用程序。例如,当客户向智能客服查询订单状态时,客服AI通过MCP直接连接至企业订单数据库,检索相关订单信息,并在无需人工干预的情况下向客户提供精确的订单状态报告。企业财务分析AI助手通过MCP协议连接会计软件系统、客户关系管理数据库和市场分析工具,为管理决策者生成集成多源数据的综合分析报告。
- A2A技术适用场景:跨不同AI系统的多代理协作环境;需要整合来自不同代理专业知识的复杂工作流程;涉及不同供应商AI的跨平台集成场景;以及任务分解型问题解决方案,其中专业代理各自处理任务的不同方面。例如,当客户需要在下单后修改配送地址时,客户服务AI代理接收此请求并确定需要物流系统的支持。通过A2A协议,它与具有修改配送信息权限的专用物流AI代理建立通信,这两个AI代理在各自的专业领域内协作解决问题,形成完整的服务流程。在复杂的企业审批工作流中,文档接收AI代理、合规检查AI代理和最终审批管理AI代理通过A2A协议进行通信,确保工作流程的无缝衔接与高效处理。
六、A2A代码流程示例
6.1 代码示例说明
目前提供了JavaScript和Python语言的示例,这些示例旨在演示A2A协议的核心交互流程,包括Agent发现、任务创建、消息传递和工件处理。还提供了主流框架的集成案例,如Python框架中的LangGraph集成、CrewAI集成、Google ADK集成;JavaScript框架中的Genkit集成、AutoGen集成、Node.js Web框架集成等。此外,还有示例项目,如多智能体对话系统、代码助手、企业知识库等。
6.2 Python基础示例(天气智能体服务端实现)
以下是天气智能体服务端(FastAPI实现)的代码示例:
# 天气智能体服务端(FastAPI实现)
from fastapi import FastAPI, HTTPException
from datetime import date
from pydantic import BaseModel
import uvicorn
app = FastAPI()
# Agent Card声明(通过/.well - known/agent.json暴露)
WEATHER_AGENT_CARD = {
"name": "WeatherAgent",
"version": "1.0",
"description": "提供指定日期的天气数据查询",
"endpoints": {
"task_submit": "/api/tasks/weather",
"sse_subscribe": "/api/tasks/updates"
},
"input_schema": {
"type": "object",
"properties": {
"date": {"type": "string", "format": "date"},
"location": {"type": "string", "enum": ["北京"]}
},
"required": ["date"]
},
"authentication": {"methods": ["API_Key"]}
}
# 任务处理端点
@app.post("/api/tasks/weather")
def handle_weather_task(task: dict):
try:
# 校验参数
date_str = task.get("date")
location = task.get("location")
if not date_str:
raise HTTPException(status_code = 400, detail = "Missing 'date' parameter")
# 模拟查询天气数据
weather_data = {"date": date_str, "location": location, "weather": "Sunny"}
return weather_data
except Exception as e:
raise HTTPException(status_code = 500, detail = str(e))
if __name__ == "__main__":
uvicorn.run(app, host = "0.0.0.0", port = 8000)
上述代码实现了一个简单的天气智能体服务端,通过FastAPI框架暴露了任务处理端点,接收任务请求,校验参数,模拟查询天气数据并返回结构化结果。同时,定义了Agent Card,用于暴露智能体的能力。
七、结论
Agent2Agent(A2A)协议和模型上下文协议(MCP)在人工智能领域都具有重要的意义。A2A协议为不同AI代理之间的协作提供了标准化的解决方案,打破了智能体间的隔离,实现了跨平台的高效协作,适用于多代理协作的复杂场景。MCP协议则解决了大模型与外部数据源及工具的集成问题,为AI模型提供了更丰富的上下文信息和工具调用能力,适用于需要访问外部资源的单一代理任务。两者并不是竞争关系,而是互补的,共同构筑一个更强大的自治代理生态。未来,随着AI技术的不断发展,A2A和MCP协议有望在更多领域得到应用,推动AI系统的进一步发展和创新。