12个偏微分方程常用的不等式

偏微分方程常用不等式

不等式不仅是分析学的重要内容,也是处理数学问题的有力工具.本文介绍作者在研究偏微分方程中遇到的几个常用且重要的不等式,掌握其内容和证明思想,并熟练应用,便于以后的学习和研究.

对数不等式

x 1 + x ≤ ln ⁡ ( 1 + x ) ≤ x , x > − 1 , \frac{x}{1+x} \leq \ln (1+x) \leq x, x>-1, 1+xxln(1+x)x,x>1,
等号成立当且仅当 x = 0 x=0 x=0.

算数平均值-几何平均值不等式

a i ≥ 0 , i = 1 , 2 , … , n a_i \geq 0, i=1,2, \ldots, n ai0,i=1,2,,n, 则成立
n ( 1 a 1 + 1 a 2 + … + 1 a n ) ≤ a 1 a 2 … a n n ≤ a 1 + a 2 + … + a n n \frac{n}{\left(\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}\right)} \leq \sqrt[n]{a_1 a_2 \ldots a_n} \leq \frac{a_1+a_2+\ldots+a_n}{n} (a11+a21++an1)nna1a2an na1+a2++an
等号成立当且仅当.

柯西(Cauchy)不等式

a i , b i a_i, b_i ai,bi 为任意实数 ( i = 1 , 2 , … , n ) (i=1,2, \ldots, n) (i=1,2,,n), 则有
( ∑ i = 1 n a i b i ) 2 ≤ ∑ i = 1 n a i 2 ⋅ ∑ i = 1 n b i 2 , \left(\sum_{i=1}^n a_i b_i\right)^2 \leq \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2, (i=1naibi)2i=1nai2i=1nbi2,
等号成立当且仅当 a i a_i ai b i b_i bi 成比例.

施瓦茨(Schwarz)不等式

f ( x ) , g ( x ) f(x), g(x) f(x),g(x) [ a , b ] [a, b] [a,b] 上可积, 则有
( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b [ f ( x ) ] 2 d x ∫ a b [ g ( x ) ] 2 d x \left(\int_a^b f(x) g(x)dx\right)^ 2 \leq \int_a^b[f(x)]^2 d x \int_a^b[g(x)]^2 d x (abf(x)g(x)dx)2ab[f(x)]2dxab[g(x)]2dx
f ( x ) , g ( x ) f(x), g(x) f(x),g(x) [ a , b ] [a, b] [a,b] 上连续, 则等号成立当且仅当存在常数 α , β \alpha, \beta α,β 使得 α f ( x ) = β g ( x ) ( α , β \alpha f(x)=\beta g(x)(\alpha, \beta αf(x)=βg(x)(α,β 不同时为零 ) ) ).

杨(Young)不等式

假设 a > 0 , b > 0 , p > 1 , q > 1 a>0, b>0, p>1, q>1 a>0,b>0,p>1,q>1, 且 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1, 则
a b ≤ a p p + b q q . a b \leq \frac{a^p}{p}+\frac{b^q}{q} . abpap+qbq.
尤其是, 当 p = q = 2 p=q=2 p=q=2 时, 上述不等式也称为柯西(Cauchy)不等式.

霍尔德(Hölder)不等式

基本形式

a i ≥ 0 , b i ≥ 0 ( i = 1 , 2 , … , n ) , p , q ∈ R a_i \geq 0, b_i \geq 0(i=1,2, \ldots, n), p, q \in R ai0,bi0(i=1,2,,n),p,qR 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1, 则 当 p > 1 ( q < 1 ) p>1(q<1) p>1(q<1) 时,
∑ i = 1 n a i b i ≤ ( ∑ i = 1 n a i ) 1 p ⋅ ( ∑ i = 1 n b i ) 1 q ; \sum_{i=1}^n a_i b_i \leq\left(\sum_{i=1}^n a_i\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^n b_i\right)^{\frac{1}{q}} ; i=1naibi(i=1nai)p1(i=1nbi)q1;
p < 1 , p ≠ 0 ( q < 1 ) p<1, p \neq 0(q<1) p<1,p=0(q<1) 时,
∑ i = 1 n a i b i ≥ ( ∑ i = 1 n a i ) 1 p ⋅ ( ∑ i = 1 n b i ) 1 q , \sum_{i=1}^n a_i b_i \geq\left(\sum_{i=1}^n a_i\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^n b_i\right)^{\frac{1}{q}}, i=1naibi(i=1nai)p1(i=1nbi)q1,
其中等号成立当且仅当 a i , b i a_i, b_i ai,bi 成比例 [ ∃ α , β \left[\exists \alpha, \beta\right. [α,β 不全为零使 α a i p = β b i q ( i = 1 , 2 , … , n ) ] \left.\alpha a_i^p=\beta b_i^q(i=1,2, \ldots, n)\right] αaip=βbiq(i=1,2,,n)].

积分形式

f ( x ) ≥ 0 , g ( x ) ≥ 0 f(x) \geq 0, g(x) \geq 0 f(x)0,g(x)0 [ a , b ] [a, b] [a,b] 上可积并使下述积分有意义, p , q ≠ 0 , 1 p, q \neq 0,1 p,q=0,1 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1, 则有 当 p > 1 ( q < 1 ) p>1(q<1) p>1(q<1) 时,
∫ a b f ( x ) g ( x ) d x ≤ ( ∫ a b f ( x ) d x ) 1 p ⋅ ( ∫ a b g ( x ) d x ) 1 q \int_a^b f(x) g(x) d x \leq\left(\int_a^b f(x) d x\right)^{\frac{1}{p}} \cdot\left(\int_a^b g(x) d x\right)^{\frac{1}{q}} abf(x)g(x)dx(abf(x)dx)p1(abg(x)dx)q1
p < 1 , p ≠ 0 ( q < 1 ) p<1, p \neq 0(q<1) p<1,p=0(q<1) 时,
∫ a b f ( x ) g ( x ) d x ≥ ( ∫ a b f ( x ) d x ) 1 p ⋅ ( ∫ a b g ( x ) d x ) 1 q ; \int_a^b f(x) g(x) d x \geq\left(\int_a^b f(x) d x\right)^{\frac{1}{p}} \cdot\left(\int_a^b g(x) d x\right)^{\frac{1}{q}} ; abf(x)g(x)dx(abf(x)dx)p1(abg(x)dx)q1;
f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 成比例, 那么等号成立当且仅当 f p ( x ) , g q ( x ) f^p(x), g^q(x) fp(x),gq(x) 成比例.

格朗沃尔 (Grönwall) 不等式

连续形式

假设 α , β \alpha, \beta α,β 为任意非负常数, η ( x ) ( a ≤ x ≤ b ) \eta(x)(a \leq x \leq b) η(x)(axb) 为 连续函数, 且满足
∣ η ( x ) ∣ ≤ β + α ∫ a x ∣ η ( t ) ∣ d t , a ≤ x ≤ b , |\eta(x)| \leq \beta+\alpha \int_a^x|\eta(t)| d t, \quad a \leq x \leq b, η(x)β+αaxη(t)dt,axb,

∣ η ( x ) ∣ ≤ β e α ( x − a ) , a ≤ x ≤ b . |\eta(x)| \leq \beta e^{\alpha(x-a)}, \quad a \leq x \leq b . η(x)βeα(xa),axb.

离散形式

假设 α , β \alpha, \beta α,β 为任意非负常数, 序列 { η n } \left\{\eta_n\right\} {ηn} 满足
∣ η n ∣ ≤ β + α h ∑ j = 0 n − 1 η j , n = k , k + 1 , ⋯   , n h ≤ T , \left|\eta_n\right| \leq \beta+\alpha h \sum_{j=0}^{n-1} \eta_j, \quad n=k, k+1, \cdots, n h \leq T, ηnβ+αhj=0n1ηj,n=k,k+1,,nhT,
其中 h > 0 h>0 h>0 表示步长, 则
∣ η n ∣ ≤ e α T ( β + α k h M 0 ) , n ≥ k , n h ≤ T . \left|\eta_n\right| \leq e^{\alpha T}\left(\beta+\alpha k h M_0\right), \quad n \geq k, n h \leq T . ηneαT(β+αkhM0),nk,nhT.
其中 M 0 = max ⁡ ( ∣ η 0 ∣ , ∣ η 1 ∣ , ⋯   , ∣ η k − 1 ∣ ) . M_0=\max \left(\left|\eta_0\right|,\left|\eta_1\right|, \cdots,\left|\eta_{k-1}\right|\right). M0=max(η0,η1,,ηk1).

詹森(Jensen)不等式

  1. f ( x ) f(x) f(x) 是区间 [ a , b ] [a, b] [a,b] 上的下凸函数,则对任意的 x 1 , x 2 , x 3 , … , x n ∈ [ a , b ] x_1, x_2, x_3, \ldots, x_n \in[a, b] x1,x2,x3,,xn[a,b], 有不等式:
    ∑ i = 1 n f ( x i ) n ≥ f ( ∑ i = 1 n x i n ) \frac{\sum_{i=1}^n f\left(x_i\right)}{n} \geq f\left(\frac{\sum_{i=1}^n x_i}{n}\right) ni=1nf(xi)f(ni=1nxi)
    当且仅当 x 1 = x 2 = x 3 = … = x n x_1=x_2=x_3=\ldots=x_n x1=x2=x3==xn 时等号成立.

  2. 其加权形式为:
    f ( x ) f(x) f(x) 是区间 [ a , b ] [a, b] [a,b] 上的下凸函数, 则对任意的 x 1 , x 2 , x 3 , … , x n ∈ [ a , b ] x_1, x_2, x_3, \ldots, x_n \in[a, b] x1,x2,x3,,xn[a,b], 且 a 1 + a 2 + a 3 + … + a n = 1 a_1+a_2+a_3+\ldots+a_n=1 a1+a2+a3++an=1, a 1 , a 2 , a 3 … a n a_1, a_2, a_3 \ldots a_n a1,a2,a3an 为正数, 有
    f ( a 1 x 1 + a 2 x 2 + a 3 x 3 + … + a n x n ) ≤ a 1 f ( x 1 ) + a 2 f ( x 2 ) + … + a n f ( x n ) f\left(a_1 x_1+a_2 x_2+a_3 x_3+\ldots+a_n x_n\right) \leq a_1 f\left(x_1\right)+a_2 f\left(x_2\right)+\ldots+a_n f\left(x_n\right) f(a1x1+a2x2+a3x3++anxn)a1f(x1)+a2f(x2)++anf(xn)
    当且仅当 x 1 = x 2 = x 3 = … = x n x_1=x_2=x_3=\ldots=x_n x1=x2=x3==xn 时等号成立.

闵可夫斯基(Minkowski)不等式

基本形式

a i ≥ 0 , b i ≥ 0 ( i = 1 , 2 , … , n ) a_i \geq 0, b_i \geq 0(i=1,2, \ldots, n) ai0,bi0(i=1,2,,n), 则对于 ∀ r ≠ 0 , 1 \forall r \neq 0,1 r=0,1, 则 当 r > 1 r>1 r>1 时, 有
[ ∑ i = 1 n ( a i + b i ) r ] 1 r ≤ ∑ i = 1 n ( a i r ) 1 r + ∑ i = 1 n ( b i r ) 1 r \left[\sum_{i=1}^n\left(a_i+b i\right)^r\right]^{\frac{1}{r}} \leq \sum_{i=1}^n\left(a_i^r\right)^{\frac{1}{r}}+\sum_{i=1}^n\left(b_i^r\right)^{\frac{1}{r}} [i=1n(ai+bi)r]r1i=1n(air)r1+i=1n(bir)r1
r < 1 r<1 r<1 时, 有
[ ∑ i = 1 n ( a i + b i ) r ] 1 r ≥ [ ∑ i = 1 n ( a i r ) ] 1 r + [ ∑ i = 1 n ( b i r ) ] 1 r \left[\sum_{i=1}^n\left(a_i+b i\right)^r\right]^{\frac{1}{r}} \geq\left[\sum_{i=1}^n\left(a_i^r\right)\right]^{\frac{1}{r}}+\left[\sum_{i=1}^n\left(b_i^r\right)\right]^{\frac{1}{r}} [i=1n(ai+bi)r]r1[i=1n(air)]r1+[i=1n(bir)]r1
其中等号成立当且仅当 a i , b i a_i, b_i ai,bi 成比例.

积分形式

f ( x ) ≥ 0 , g ( x ) ≥ 0 f(x) \geq 0, g(x) \geq 0 f(x)0,g(x)0, 在 [ a , b ] [a, b] [a,b] 上有定义, 使下述积分有意义, 则 当 r > 1 r>1 r>1 时, 有
[ ∫ a b ( f ( x ) + g ( x ) ) r ] d x 1 r ≤ [ ∫ a b ( f ( x ) ) r d x ] 1 r + [ ∫ a b ( g ( x ) ) r d x ] 1 r , \left[\int_a^b(f(x)+g(x))^r\right] d x^{\frac{1}{r}} \leq\left[\int_a^b(f(x))^r d x\right]^{\frac{1}{r}}+\left[\int_a^b(g(x))^r d x\right]^{\frac{1}{r}}, [ab(f(x)+g(x))r]dxr1[ab(f(x))rdx]r1+[ab(g(x))rdx]r1,
r < 1 r<1 r<1 时, 有
[ ∫ a b ( f ( x ) + g ( x ) ) r ] 1 r ≥ [ ∫ a b ( f ( x ) ) r ] 1 r + [ ∫ a b ( g ( x ) ) r ] 1 r . \left[\int_a^b(f(x)+g(x))^r\right]^{\frac{1}{r}} \geq\left[\int_a^b(f(x))^r\right]^{\frac{1}{r}}+\left[\int_a^b(g(x))^r\right]^{\frac{1}{r}} . [ab(f(x)+g(x))r]r1[ab(f(x))r]r1+[ab(g(x))r]r1.

贝塞尔(Bessel)不等式

H \mathcal{H} H 是一个装备了内积: ⟨ ⋅ , ⋅ ⟩ \langle\cdot, \cdot\rangle , 的希尔伯特空间.考虑一组规范正交向量的序列: ( e 1 , e 2 , ⋯   , e n , ⋯   ) \left(e_1, e_2, \cdots, e_n, \cdots\right) (e1,e2,,en,) .那么,对于任意 一个 H \mathcal{H} H 中的元素,都有:
∑ k ∣ ⟨ x , e k ⟩ ∣ 2 ≤ ∥ x ∥ 2 \sum_k\left|\left\langle x, e_k\right\rangle\right|^2 \leq\|x\|^2 kx,ek2x2
其中的系数 ⟨ x , e k ⟩ \left\langle x, e_k\right\rangle x,ek x x x 在一个正交向量序列中元素 e k e_k ek 上的投影的长度.

庞加莱(Poincaré)不等式

Ω ⊂ R n \Omega \subset R^n ΩRn 含于一个宽度为 h \mathrm{h} h 的条形区域内, μ ∈ W 1 , p 0 ( Ω ) \mu \in W^1, p_0(\Omega) μW1,p0(Ω) ,则下列庞加莱不等式成立:
∫ Ω ∣ μ ∣ p d x ≤ h p ∫ Ω ∣ D μ ∣ p d x \int_{\Omega}|\mu|^p d x \leq h^p \int_{\Omega}|D \mu|^p d x ΩμpdxhpΩDμpdx
而不等式:
∫ Ω μ 2 d x ≤ K ∫ Ω ∣ D μ ∣ 2 d x + 1 ∣ Ω ∣ ( ∫ Ω μ d x ) 2 \int_{\Omega} \mu^2 d x \leq K \int_{\Omega}\left|D_\mu\right|^2 d x+\frac{1}{|\Omega|}\left(\int_{\Omega} \mu d x\right)^2 Ωμ2dxKΩDμ2dx+∣Ω∣1(Ωμdx)2
亦称为㡾加莱不等式.若集合 N = { x ∈ Ω ∣ u ( x ) = 0 } \mathrm{N}=\{\mathrm{x} \in \Omega \mid \mathrm{u}(\mathrm{x})=0\} N={xΩu(x)=0} R n − 1 R^{n-1} Rn1 中的测度 ∣ N ∣ > 0 \mid\mathrm{N}\mid>0 N∣>0, 则:
∫ Ω μ 2 d x ≤ K ∫ Ω ∣ D μ ∣ 2 d x \int_{\Omega} \mu^2 d x \leq K \int_{\Omega}|D \mu|^2 d x Ωμ2dxKΩDμ2dx

哈代(Hardy)不等式

p > 1 p>1 p>1, a是非负向量. 那么当 a ∈ l p a \in l_p alp 时, σ ∈ l p \boldsymbol{\sigma} \in l_p σlp 且成立着
∥ σ ∥ p ⩽ p p − 1 ∥ a ∥ p \|\boldsymbol{\sigma}\|_p \leqslant \frac{p}{p-1}\|\boldsymbol{a}\|_p σpp1pap

∑ n = 1 ∞ σ n p ≤ ( p p − 1 ) p ∑ n = 1 ∞ a n p \sum_{n=1}^{\infty} \sigma_n^p \leq\left(\frac{p}{p-1}\right)^p \sum_{n=1}^{\infty} a_n^p n=1σnp(p1p)pn=1anp
其中等号仅当所有 a n = 0 a_n=0 an=0 时成立.


收集整理不易, 感谢点赞收藏.

作者邮箱: turingscat@126.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值