偏微分方程常用不等式
不等式不仅是分析学的重要内容,也是处理数学问题的有力工具.本文介绍作者在研究偏微分方程中遇到的几个常用且重要的不等式,掌握其内容和证明思想,并熟练应用,便于以后的学习和研究.
文章目录
对数不等式
x
1
+
x
≤
ln
(
1
+
x
)
≤
x
,
x
>
−
1
,
\frac{x}{1+x} \leq \ln (1+x) \leq x, x>-1,
1+xx≤ln(1+x)≤x,x>−1,
等号成立当且仅当
x
=
0
x=0
x=0.
算数平均值-几何平均值不等式
设
a
i
≥
0
,
i
=
1
,
2
,
…
,
n
a_i \geq 0, i=1,2, \ldots, n
ai≥0,i=1,2,…,n, 则成立
n
(
1
a
1
+
1
a
2
+
…
+
1
a
n
)
≤
a
1
a
2
…
a
n
n
≤
a
1
+
a
2
+
…
+
a
n
n
\frac{n}{\left(\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}\right)} \leq \sqrt[n]{a_1 a_2 \ldots a_n} \leq \frac{a_1+a_2+\ldots+a_n}{n}
(a11+a21+…+an1)n≤na1a2…an≤na1+a2+…+an
等号成立当且仅当.
柯西(Cauchy)不等式
设
a
i
,
b
i
a_i, b_i
ai,bi 为任意实数
(
i
=
1
,
2
,
…
,
n
)
(i=1,2, \ldots, n)
(i=1,2,…,n), 则有
(
∑
i
=
1
n
a
i
b
i
)
2
≤
∑
i
=
1
n
a
i
2
⋅
∑
i
=
1
n
b
i
2
,
\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2,
(i=1∑naibi)2≤i=1∑nai2⋅i=1∑nbi2,
等号成立当且仅当
a
i
a_i
ai 与
b
i
b_i
bi 成比例.
施瓦茨(Schwarz)不等式
若
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 在
[
a
,
b
]
[a, b]
[a,b] 上可积, 则有
(
∫
a
b
f
(
x
)
g
(
x
)
d
x
)
2
≤
∫
a
b
[
f
(
x
)
]
2
d
x
∫
a
b
[
g
(
x
)
]
2
d
x
\left(\int_a^b f(x) g(x)dx\right)^ 2 \leq \int_a^b[f(x)]^2 d x \int_a^b[g(x)]^2 d x
(∫abf(x)g(x)dx)2≤∫ab[f(x)]2dx∫ab[g(x)]2dx
若
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 在
[
a
,
b
]
[a, b]
[a,b] 上连续, 则等号成立当且仅当存在常数
α
,
β
\alpha, \beta
α,β 使得
α
f
(
x
)
=
β
g
(
x
)
(
α
,
β
\alpha f(x)=\beta g(x)(\alpha, \beta
αf(x)=βg(x)(α,β 不同时为零
)
)
).
杨(Young)不等式
假设
a
>
0
,
b
>
0
,
p
>
1
,
q
>
1
a>0, b>0, p>1, q>1
a>0,b>0,p>1,q>1, 且
1
p
+
1
q
=
1
\frac{1}{p}+\frac{1}{q}=1
p1+q1=1, 则
a
b
≤
a
p
p
+
b
q
q
.
a b \leq \frac{a^p}{p}+\frac{b^q}{q} .
ab≤pap+qbq.
尤其是, 当
p
=
q
=
2
p=q=2
p=q=2 时, 上述不等式也称为柯西(Cauchy)不等式.
霍尔德(Hölder)不等式
基本形式
设
a
i
≥
0
,
b
i
≥
0
(
i
=
1
,
2
,
…
,
n
)
,
p
,
q
∈
R
a_i \geq 0, b_i \geq 0(i=1,2, \ldots, n), p, q \in R
ai≥0,bi≥0(i=1,2,…,n),p,q∈R 且
1
p
+
1
q
=
1
\frac{1}{p}+\frac{1}{q}=1
p1+q1=1, 则 当
p
>
1
(
q
<
1
)
p>1(q<1)
p>1(q<1) 时,
∑
i
=
1
n
a
i
b
i
≤
(
∑
i
=
1
n
a
i
)
1
p
⋅
(
∑
i
=
1
n
b
i
)
1
q
;
\sum_{i=1}^n a_i b_i \leq\left(\sum_{i=1}^n a_i\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^n b_i\right)^{\frac{1}{q}} ;
i=1∑naibi≤(i=1∑nai)p1⋅(i=1∑nbi)q1;
当
p
<
1
,
p
≠
0
(
q
<
1
)
p<1, p \neq 0(q<1)
p<1,p=0(q<1) 时,
∑
i
=
1
n
a
i
b
i
≥
(
∑
i
=
1
n
a
i
)
1
p
⋅
(
∑
i
=
1
n
b
i
)
1
q
,
\sum_{i=1}^n a_i b_i \geq\left(\sum_{i=1}^n a_i\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^n b_i\right)^{\frac{1}{q}},
i=1∑naibi≥(i=1∑nai)p1⋅(i=1∑nbi)q1,
其中等号成立当且仅当
a
i
,
b
i
a_i, b_i
ai,bi 成比例
[
∃
α
,
β
\left[\exists \alpha, \beta\right.
[∃α,β 不全为零使
α
a
i
p
=
β
b
i
q
(
i
=
1
,
2
,
…
,
n
)
]
\left.\alpha a_i^p=\beta b_i^q(i=1,2, \ldots, n)\right]
αaip=βbiq(i=1,2,…,n)].
积分形式
设
f
(
x
)
≥
0
,
g
(
x
)
≥
0
f(x) \geq 0, g(x) \geq 0
f(x)≥0,g(x)≥0 在
[
a
,
b
]
[a, b]
[a,b] 上可积并使下述积分有意义,
p
,
q
≠
0
,
1
p, q \neq 0,1
p,q=0,1 且
1
p
+
1
q
=
1
\frac{1}{p}+\frac{1}{q}=1
p1+q1=1, 则有 当
p
>
1
(
q
<
1
)
p>1(q<1)
p>1(q<1) 时,
∫
a
b
f
(
x
)
g
(
x
)
d
x
≤
(
∫
a
b
f
(
x
)
d
x
)
1
p
⋅
(
∫
a
b
g
(
x
)
d
x
)
1
q
\int_a^b f(x) g(x) d x \leq\left(\int_a^b f(x) d x\right)^{\frac{1}{p}} \cdot\left(\int_a^b g(x) d x\right)^{\frac{1}{q}}
∫abf(x)g(x)dx≤(∫abf(x)dx)p1⋅(∫abg(x)dx)q1
当
p
<
1
,
p
≠
0
(
q
<
1
)
p<1, p \neq 0(q<1)
p<1,p=0(q<1) 时,
∫
a
b
f
(
x
)
g
(
x
)
d
x
≥
(
∫
a
b
f
(
x
)
d
x
)
1
p
⋅
(
∫
a
b
g
(
x
)
d
x
)
1
q
;
\int_a^b f(x) g(x) d x \geq\left(\int_a^b f(x) d x\right)^{\frac{1}{p}} \cdot\left(\int_a^b g(x) d x\right)^{\frac{1}{q}} ;
∫abf(x)g(x)dx≥(∫abf(x)dx)p1⋅(∫abg(x)dx)q1;
若
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x) 成比例, 那么等号成立当且仅当
f
p
(
x
)
,
g
q
(
x
)
f^p(x), g^q(x)
fp(x),gq(x) 成比例.
格朗沃尔 (Grönwall) 不等式
连续形式
假设
α
,
β
\alpha, \beta
α,β 为任意非负常数,
η
(
x
)
(
a
≤
x
≤
b
)
\eta(x)(a \leq x \leq b)
η(x)(a≤x≤b) 为 连续函数, 且满足
∣
η
(
x
)
∣
≤
β
+
α
∫
a
x
∣
η
(
t
)
∣
d
t
,
a
≤
x
≤
b
,
|\eta(x)| \leq \beta+\alpha \int_a^x|\eta(t)| d t, \quad a \leq x \leq b,
∣η(x)∣≤β+α∫ax∣η(t)∣dt,a≤x≤b,
则
∣
η
(
x
)
∣
≤
β
e
α
(
x
−
a
)
,
a
≤
x
≤
b
.
|\eta(x)| \leq \beta e^{\alpha(x-a)}, \quad a \leq x \leq b .
∣η(x)∣≤βeα(x−a),a≤x≤b.
离散形式
假设
α
,
β
\alpha, \beta
α,β 为任意非负常数, 序列
{
η
n
}
\left\{\eta_n\right\}
{ηn} 满足
∣
η
n
∣
≤
β
+
α
h
∑
j
=
0
n
−
1
η
j
,
n
=
k
,
k
+
1
,
⋯
,
n
h
≤
T
,
\left|\eta_n\right| \leq \beta+\alpha h \sum_{j=0}^{n-1} \eta_j, \quad n=k, k+1, \cdots, n h \leq T,
∣ηn∣≤β+αhj=0∑n−1ηj,n=k,k+1,⋯,nh≤T,
其中
h
>
0
h>0
h>0 表示步长, 则
∣
η
n
∣
≤
e
α
T
(
β
+
α
k
h
M
0
)
,
n
≥
k
,
n
h
≤
T
.
\left|\eta_n\right| \leq e^{\alpha T}\left(\beta+\alpha k h M_0\right), \quad n \geq k, n h \leq T .
∣ηn∣≤eαT(β+αkhM0),n≥k,nh≤T.
其中
M
0
=
max
(
∣
η
0
∣
,
∣
η
1
∣
,
⋯
,
∣
η
k
−
1
∣
)
.
M_0=\max \left(\left|\eta_0\right|,\left|\eta_1\right|, \cdots,\left|\eta_{k-1}\right|\right).
M0=max(∣η0∣,∣η1∣,⋯,∣ηk−1∣).
詹森(Jensen)不等式
-
若 f ( x ) f(x) f(x) 是区间 [ a , b ] [a, b] [a,b] 上的下凸函数,则对任意的 x 1 , x 2 , x 3 , … , x n ∈ [ a , b ] x_1, x_2, x_3, \ldots, x_n \in[a, b] x1,x2,x3,…,xn∈[a,b], 有不等式:
∑ i = 1 n f ( x i ) n ≥ f ( ∑ i = 1 n x i n ) \frac{\sum_{i=1}^n f\left(x_i\right)}{n} \geq f\left(\frac{\sum_{i=1}^n x_i}{n}\right) n∑i=1nf(xi)≥f(n∑i=1nxi)
当且仅当 x 1 = x 2 = x 3 = … = x n x_1=x_2=x_3=\ldots=x_n x1=x2=x3=…=xn 时等号成立. -
其加权形式为:
若 f ( x ) f(x) f(x) 是区间 [ a , b ] [a, b] [a,b] 上的下凸函数, 则对任意的 x 1 , x 2 , x 3 , … , x n ∈ [ a , b ] x_1, x_2, x_3, \ldots, x_n \in[a, b] x1,x2,x3,…,xn∈[a,b], 且 a 1 + a 2 + a 3 + … + a n = 1 a_1+a_2+a_3+\ldots+a_n=1 a1+a2+a3+…+an=1, a 1 , a 2 , a 3 … a n a_1, a_2, a_3 \ldots a_n a1,a2,a3…an 为正数, 有
f ( a 1 x 1 + a 2 x 2 + a 3 x 3 + … + a n x n ) ≤ a 1 f ( x 1 ) + a 2 f ( x 2 ) + … + a n f ( x n ) f\left(a_1 x_1+a_2 x_2+a_3 x_3+\ldots+a_n x_n\right) \leq a_1 f\left(x_1\right)+a_2 f\left(x_2\right)+\ldots+a_n f\left(x_n\right) f(a1x1+a2x2+a3x3+…+anxn)≤a1f(x1)+a2f(x2)+…+anf(xn)
当且仅当 x 1 = x 2 = x 3 = … = x n x_1=x_2=x_3=\ldots=x_n x1=x2=x3=…=xn 时等号成立.
闵可夫斯基(Minkowski)不等式
基本形式
若
a
i
≥
0
,
b
i
≥
0
(
i
=
1
,
2
,
…
,
n
)
a_i \geq 0, b_i \geq 0(i=1,2, \ldots, n)
ai≥0,bi≥0(i=1,2,…,n), 则对于
∀
r
≠
0
,
1
\forall r \neq 0,1
∀r=0,1, 则 当
r
>
1
r>1
r>1 时, 有
[
∑
i
=
1
n
(
a
i
+
b
i
)
r
]
1
r
≤
∑
i
=
1
n
(
a
i
r
)
1
r
+
∑
i
=
1
n
(
b
i
r
)
1
r
\left[\sum_{i=1}^n\left(a_i+b i\right)^r\right]^{\frac{1}{r}} \leq \sum_{i=1}^n\left(a_i^r\right)^{\frac{1}{r}}+\sum_{i=1}^n\left(b_i^r\right)^{\frac{1}{r}}
[i=1∑n(ai+bi)r]r1≤i=1∑n(air)r1+i=1∑n(bir)r1
当
r
<
1
r<1
r<1 时, 有
[
∑
i
=
1
n
(
a
i
+
b
i
)
r
]
1
r
≥
[
∑
i
=
1
n
(
a
i
r
)
]
1
r
+
[
∑
i
=
1
n
(
b
i
r
)
]
1
r
\left[\sum_{i=1}^n\left(a_i+b i\right)^r\right]^{\frac{1}{r}} \geq\left[\sum_{i=1}^n\left(a_i^r\right)\right]^{\frac{1}{r}}+\left[\sum_{i=1}^n\left(b_i^r\right)\right]^{\frac{1}{r}}
[i=1∑n(ai+bi)r]r1≥[i=1∑n(air)]r1+[i=1∑n(bir)]r1
其中等号成立当且仅当
a
i
,
b
i
a_i, b_i
ai,bi 成比例.
积分形式
设
f
(
x
)
≥
0
,
g
(
x
)
≥
0
f(x) \geq 0, g(x) \geq 0
f(x)≥0,g(x)≥0, 在
[
a
,
b
]
[a, b]
[a,b] 上有定义, 使下述积分有意义, 则 当
r
>
1
r>1
r>1 时, 有
[
∫
a
b
(
f
(
x
)
+
g
(
x
)
)
r
]
d
x
1
r
≤
[
∫
a
b
(
f
(
x
)
)
r
d
x
]
1
r
+
[
∫
a
b
(
g
(
x
)
)
r
d
x
]
1
r
,
\left[\int_a^b(f(x)+g(x))^r\right] d x^{\frac{1}{r}} \leq\left[\int_a^b(f(x))^r d x\right]^{\frac{1}{r}}+\left[\int_a^b(g(x))^r d x\right]^{\frac{1}{r}},
[∫ab(f(x)+g(x))r]dxr1≤[∫ab(f(x))rdx]r1+[∫ab(g(x))rdx]r1,
当
r
<
1
r<1
r<1 时, 有
[
∫
a
b
(
f
(
x
)
+
g
(
x
)
)
r
]
1
r
≥
[
∫
a
b
(
f
(
x
)
)
r
]
1
r
+
[
∫
a
b
(
g
(
x
)
)
r
]
1
r
.
\left[\int_a^b(f(x)+g(x))^r\right]^{\frac{1}{r}} \geq\left[\int_a^b(f(x))^r\right]^{\frac{1}{r}}+\left[\int_a^b(g(x))^r\right]^{\frac{1}{r}} .
[∫ab(f(x)+g(x))r]r1≥[∫ab(f(x))r]r1+[∫ab(g(x))r]r1.
贝塞尔(Bessel)不等式
设
H
\mathcal{H}
H 是一个装备了内积:
⟨
⋅
,
⋅
⟩
\langle\cdot, \cdot\rangle
⟨⋅,⋅⟩ 的希尔伯特空间.考虑一组规范正交向量的序列:
(
e
1
,
e
2
,
⋯
,
e
n
,
⋯
)
\left(e_1, e_2, \cdots, e_n, \cdots\right)
(e1,e2,⋯,en,⋯) .那么,对于任意 一个
H
\mathcal{H}
H 中的元素,都有:
∑
k
∣
⟨
x
,
e
k
⟩
∣
2
≤
∥
x
∥
2
\sum_k\left|\left\langle x, e_k\right\rangle\right|^2 \leq\|x\|^2
k∑∣⟨x,ek⟩∣2≤∥x∥2
其中的系数
⟨
x
,
e
k
⟩
\left\langle x, e_k\right\rangle
⟨x,ek⟩ 是
x
x
x 在一个正交向量序列中元素
e
k
e_k
ek 上的投影的长度.
庞加莱(Poincaré)不等式
设
Ω
⊂
R
n
\Omega \subset R^n
Ω⊂Rn 含于一个宽度为
h
\mathrm{h}
h 的条形区域内,
μ
∈
W
1
,
p
0
(
Ω
)
\mu \in W^1, p_0(\Omega)
μ∈W1,p0(Ω) ,则下列庞加莱不等式成立:
∫
Ω
∣
μ
∣
p
d
x
≤
h
p
∫
Ω
∣
D
μ
∣
p
d
x
\int_{\Omega}|\mu|^p d x \leq h^p \int_{\Omega}|D \mu|^p d x
∫Ω∣μ∣pdx≤hp∫Ω∣Dμ∣pdx
而不等式:
∫
Ω
μ
2
d
x
≤
K
∫
Ω
∣
D
μ
∣
2
d
x
+
1
∣
Ω
∣
(
∫
Ω
μ
d
x
)
2
\int_{\Omega} \mu^2 d x \leq K \int_{\Omega}\left|D_\mu\right|^2 d x+\frac{1}{|\Omega|}\left(\int_{\Omega} \mu d x\right)^2
∫Ωμ2dx≤K∫Ω∣Dμ∣2dx+∣Ω∣1(∫Ωμdx)2
亦称为㡾加莱不等式.若集合
N
=
{
x
∈
Ω
∣
u
(
x
)
=
0
}
\mathrm{N}=\{\mathrm{x} \in \Omega \mid \mathrm{u}(\mathrm{x})=0\}
N={x∈Ω∣u(x)=0} 的
R
n
−
1
R^{n-1}
Rn−1 中的测度
∣
N
∣
>
0
\mid\mathrm{N}\mid>0
∣N∣>0, 则:
∫
Ω
μ
2
d
x
≤
K
∫
Ω
∣
D
μ
∣
2
d
x
\int_{\Omega} \mu^2 d x \leq K \int_{\Omega}|D \mu|^2 d x
∫Ωμ2dx≤K∫Ω∣Dμ∣2dx
哈代(Hardy)不等式
设
p
>
1
p>1
p>1, a是非负向量. 那么当
a
∈
l
p
a \in l_p
a∈lp 时,
σ
∈
l
p
\boldsymbol{\sigma} \in l_p
σ∈lp 且成立着
∥
σ
∥
p
⩽
p
p
−
1
∥
a
∥
p
\|\boldsymbol{\sigma}\|_p \leqslant \frac{p}{p-1}\|\boldsymbol{a}\|_p
∥σ∥p⩽p−1p∥a∥p
或
∑
n
=
1
∞
σ
n
p
≤
(
p
p
−
1
)
p
∑
n
=
1
∞
a
n
p
\sum_{n=1}^{\infty} \sigma_n^p \leq\left(\frac{p}{p-1}\right)^p \sum_{n=1}^{\infty} a_n^p
n=1∑∞σnp≤(p−1p)pn=1∑∞anp
其中等号仅当所有
a
n
=
0
a_n=0
an=0 时成立.
收集整理不易, 感谢点赞收藏.
作者邮箱: turingscat@126.com