高等数学 第六讲 一元微分学的应用(二)_中值定理,微分等式,微分不等式

高等数学 第6讲 中值定理 微分等式 微分不等式

1.涉及函数的中值定理

  • 有界与最值定理
  • 介值定理
  • 平均值定理
  • 零点定理(重点)

大前提:函数在闭区间连续

1.1 有界与最值定理

连续函数在闭区间上有最大值和最小值即有界

1.2 介值定理

在连续函数的最大值和最小值之间,存在着一个值μ,那么肯定有一点.ξ,f(ξ)=μ

1.3 平均值定理

在两个点a,b之间存在着任意个点,但是至少其中有一个点ξ,f(ξ)=剩余其他个点的函数值的平均值

1.4 零点定理

f(a)*f(b)<0,存在一点ξ,使得f(ξ)=0,推广就是开区间左右可以取极限

推广就是可以求极限

2.涉及导数(微分)的中值定理

2.1 导数零点定理

前提:f(x)在[a,b]上可导
f’(a)f’(b)<0时,存在ξ属于(a,b),f’(ξ)=0

2.2 罗尔定理

前提,开区间连续,闭区间可导

抓两点,a和b,f(a)=f(b),如果a到b是闭区间连续,开区间可导,那么a到b之间存在一点ξ,使得f’(ξ)=0

推广导罗尔定理:
可以是极限值,但是值得注意的是,这个极值值可以是具体的数,也可以是无穷大

2.3 拉格朗日中值定理

前提,开区间连续,闭区间可导

存在ξ属于(a,b),使得
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a )   f\left(b\right) - f\left(a\right) = f'\left(\xi \right)\left(b - a\right)\: f(b)f(a)=f(ξ)(ba)

2.4 柯西中值定理

前提,开区间连续,闭区间可导,并且g’(x)≠0,就是分母不等于0

f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ )   \frac{f\left(b\right) - f\left(a\right)}{g\left(b\right) - g\left(a\right)} = \frac{f'\left(\xi \right)}{g'\left(\xi \right)}\: g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

3.泰勒公式

泰勒公式分为两种一种是带有拉格朗日余项的泰勒公式,一种是佩亚诺余项的泰勒公式,其实探究其根本,就是展开的项数不一样,拉格朗日余项会多展开一项,这项是带有中值的。
所以带有拉格朗日余项一般用于区间[a,b]在证明题目中使用,佩亚诺用于点
注意:使用泰勒公式要保证可导

在这里插入图片描述

记忆:就是从函数开始,展开导数,n阶导数下面除n!,乘上n阶的差值

一般来说怎么使用?
在证明题目中,我们可以直接展开某个式子,然后通过带入值等操作,进行使用和证明

4.常见题型解析

4.1 方程根的存在性及个数

什么是方程的根?
函数值=0的点

方程根的存在性证明
两种方法:

  • 零点定理
  • 罗尔定理

关于罗尔定理,我们是对待证明的原函数使用,它的导数是待证明的函数。

方程根的个数

证明有且仅有几个根的核心思路是证明它至少几个,再证明至多几个,然后证毕,
当然,证明存在性的方法同样可以用于方程根的个数。

两种方法:

  • 单调性
    • 分单调区间,找零点
  • 一些结论

结论一(推出至多):
罗尔定理的推论:
f ( x ) f(x) f(x) 在区间 I I I n n n 阶可导,且 f ( n ) ( x ) ≠ 0 f^{(n)}(x) \neq 0 f(n)(x)=0 n n n 阶导数无实根),则 f ( x ) f(x) f(x) 至多 n n n 个根。

推广,若 f ( n ) ( x ) f^{(n)}(x) f(n)(x) 至多 k k k 个根,则 f ( x ) f(x) f(x) 至多 k + n k + n k+n 个根。

推广就是中间过程反推,不用一直推到最后,即可得到结论。

结论二(推出至少):
在这里插入图片描述

4.2 证明函数不等式

一些常用的基本不等式

积累一些常用的基本不等式如:

解题方法

经典的做法:
经典的方法还是利用单调性,利用一阶导数和二阶导数,通过单调性,得到界限。设出f(x)。
部分题目要求你证明的东西是常数,要会将其中较大的那个设为x,然后证明,然后令x为原先的值,再得出结论。

关于选择题:
假设使用排除法,或者根据选项进行构造假设

4.3 微分中值定理有关的证明题

关于微分中值定理有关的证明题有三类题型:

  • 证明一个点ξ属于(a,b),使F[ξ,f(ξ),f’(ξ)]=0
  • 证明两个点ξ,η属于(a,b),使F[η,ξ,f(ξ),f(η),f’(ξ),f’(η)]=0
  • 证明存在一个中值点ξ(a,b),使F[ξ,f(n)(ξ)]≥0(n≥2)

4.3.1 证明一个点ξ属于(a,b),使F[ξ,f(ξ),f’(ξ)]=0

解决方法:

  1. 分析法(还原法)

就是通过思考,待证明结论的原函数是什么,来设原函数,其中可以任意添加常数,让得到值的过程更加顺畅,因为利用罗尔中值定理,我们需要两个值相同的点。

2.利用已知辅助函数,直接构造出辅助函数

利用我们积累的辅助函数,来构造出对应的类型
可以广义化的使用

第一组辅助函数:(其实可由第二组最一般的情况推出来,但是做题需要,比较常用,我们直接把它记住)

在这里插入图片描述

第二组辅助函数
只记最一般的情况即可,其它情况都可以由最一般的情况推出。

在这里插入图片描述

构造辅助函数实践:
在这里插入图片描述
在这里插入图片描述

  1. 计算微分方程的方法,求出辅助函数

较为麻烦,最后考虑这种方法

4.3.2 证明两个点ξ,η属于(a,b),使F[η,ξ,f(ξ),f(η),f’(ξ),f’(η)]=0

其中f’(ξ),f’(η)是必须存在的即为双中值问题
根据题目要求分为两类
1.不要求ξ=η
在同一区间[a,b]上用两次中值定理(拉格朗日,柯西中值定理)
2.要求ξ=η
将区间[a,b]分为两个子区间,在两个子区间分别用拉格朗日中值定理

在不要求ξ=η,如何决定使用拉格朗日还是柯西中值定理?

看形式在这里插入图片描述

4.3.3 证明存在一个中值点ξ(a,b),使F[ξ,f(n)(ξ)]≥0(n≥2)

用带拉格朗日余项的泰勒公式,其中x0点选题目中提供函数值和导数值信息多的点

高阶导数用泰勒,合理!实际题目中可能对多个点用泰勒,然后整合起来,绝对值放缩,根据待证明的结论,反推设x=什么,然后再证明。

5.做题总结

有的题目给你积分,用积分中值定理来获得一个点的值。
如:
告诉你 ∫ 0 1 f ( x ) d x = 0 ,即可得出存在一点 c ,使得 f ( c ) = 0 告诉你\int _{0}^{1}f\left(x\right)dx = 0,即可得出存在一点c,使得f\left(c\right) = 0 告诉你01f(x)dx=0,即可得出存在一点c,使得f(c)=0

积分中值定理:
积分中值定理,开区间连续,闭区间可导,存在一点 c 在 ( a , b ) 之间 , 使得 ∫ a b f ( x ) d x = ( b − a ) f ( c ) 积分中值定理,开区间连续,闭区间可导,存在一点c在\left(a,b\right)之间,使得\int _{a}^{b}f\left(x\right)dx = \left(b - a\right)f\left(c\right) 积分中值定理,开区间连续,闭区间可导,存在一点c(a,b)之间,使得abf(x)dx=(ba)f(c)

  • 16
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐要考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值