基于物理信息神经网络(PINN)求解Burgers方程(附PyTorch源代码)

基于物理信息神经网络(PINN)求解Burgers方程

在这篇博客中,我们将展示如何通过物理信息神经网络(Physics-Informed Neural Network, PINN)求解经典的 Burgers 方程。PINN 不仅依赖于训练数据的监督学习,还将偏微分方程的物理信息嵌入损失函数,从而在满足边界和初始条件的同时,约束神经网络解的物理一致性。

Burgers 方程在流体动力学、非线性波传播等领域有广泛的应用,是测试数值求解方法的经典模型之一。

1. 问题背景

Burgers 方程的表达式为:

u t + u u x

下面是一个用 PINN(Physics-Informed Neural Networks)求解一维薛定谔方程PyTorch 代码示例: ``` import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 设置随机数种子 np.random.seed(1234) torch.manual_seed(1234) # 定义神经网络模型 class SchrodingerPINN(nn.Module): def __init__(self): super(SchrodingerPINN, self).__init__() self.fc1 = nn.Linear(1, 50) self.fc2 = nn.Linear(50, 50) self.fc3 = nn.Linear(50, 50) self.fc4 = nn.Linear(50, 1) def forward(self, x): u = torch.sin(np.pi * x) x = torch.cat([x, u], 1) x = torch.tanh(self.fc1(x)) x = torch.tanh(self.fc2(x)) x = torch.tanh(self.fc3(x)) x = self.fc4(x) return x # 定义损失函数 def loss_fn(model, x_bc, u_bc, x_ic): # 边界条件损失 u_bc_pred = model(x_bc) loss_bc = torch.mean(torch.abs(u_bc - u_bc_pred)) # 初始条件损失 u_ic_pred = model(x_ic) loss_ic = torch.mean(torch.square(u_ic_pred)) # 总损失 loss = loss_bc + loss_ic return loss # 定义训练函数 def train(model, x_bc, u_bc, x_ic, epochs): optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(epochs): optimizer.zero_grad() loss = loss_fn(model, x_bc, u_bc, x_ic) loss.backward() optimizer.step() if epoch % 1000 == 0: print(f"Epoch {epoch}, Loss {loss.item()}") # 定义边界条件和初始条件 x_bc = torch.tensor([[0.0], [1.0]], requires_grad=True) u_bc = torch.tensor([[0.0], [0.0]], requires_grad=True) x_ic = torch.tensor([[0.5]], requires_grad=True) # 创建神经网络模型 model = SchrodingerPINN() # 训练模型 train(model, x_bc, u_bc, x_ic, epochs=5000) # 可视化结果 x = torch.linspace(0.0, 1.0, 100).reshape(-1, 1) u_pred = model(x).detach().numpy() plt.plot(x, np.sin(np.pi * x), label="True solution") plt.plot(x, u_pred, label="PINN solution") plt.legend() plt.show() ``` 在上面的代码中,我们定义了一个 `SchrodingerPINN` 类作为神经网络模型,其中包含了 4 个全连接层。在训练函数中,我们使用 Adam 优化器对模型进行训练。 损失函数包含了边界条件损失和初始条件损失。在边界条件损失中,我们计算了边界点处的函数值和模型预测值之间的平均绝对误差;在初始条件损失中,我们计算了初始点处的函数值和模型预测值之间的平均平方误差。 最后,我们使用 matplotlib 可视化了真实解和模型预测解的比较。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.图灵的猫.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值