kmeans参数说明
kmeans中的初始聚类中心是随机的,但是对分类结果影响不大,只会影响到迭代的次数。
迭代的终止条件有两种,一种是前后两次的迭代结果不发生变化,可以看成是迭代已经收敛,分类结果已经达到最佳。另一种是前后两次结果的差值小于某个定义好的数,也可以认为聚类过程已经收敛。
当不确定聚类 的类别数时,我们就需要找到一个评价指标,去判断分成多少类是最合适的,比如DBI分类指标。
def kmeans(data:数据集
K: 最后聚成多少类
bestLabels: Any,
criteria: 迭代终止条件
attempts: Any,
flags: Any) -> None
输入参数详解:
data是分类数据,最好使用np.float32格式,每个特征放一列,平铺开来。
此处的分类数K必须是已知的。
bestLabels是指预设的分来标签,没有时则设为None。
criteria是迭代终止的模式选择,是一个含有三个元素的元组类型,三个元素分别是type,max_iter,epsilon,其中 type的 类型有CV_TERMCRIT_ITER,CV_TERMCRIT_EPS,CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,分别代表着迭代到达到最大迭代次数终止,迭代到阈值终止,或者两者都作为迭代终止条件。max_iter是指