线性代数总结(二)

向量组

向量及向量组的线性相关性

n维向量 n n n个数构成的地一个有序数组 [ a 1 , a 2 , ⋯   , a n ] [a_1,a_2,\cdots,a_n] [a1,a2,,an]称为一个 n n n维向量,记成 α = [ a 1 , a 2 , ⋯   , a n ] \alpha=[a_1,a_2,\cdots,a_n] α=[a1,a2,,an],并称 α \alpha α为n维行向量, α T \alpha^T αT称为n维列向量。 a i a_i ai称为其第 i i i个分量

线性组合:设有 m m m n n n维向量 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm及m个数 k 1 , k 2 , ⋯   , k m k_1,k_2,\cdots,k_m k1,k2,,km,则向量 k 1 α 1 + k 2 α 2 + ⋯ + k m α m k_1\alpha_1+k_2\alpha_2+ \cdots +k_m\alpha_m k1α1+k2α2++kmαm称为向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm的线性组合。

线性表出:若向量 β \beta β能表示成向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm的线性组合,则称向量 β \beta β能被向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性表出。

线性相关:对 m m m n n n维向量 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm,若存在一组不全为零的数 k 1 , k 2 , ⋯   , k m k_1,k_2,\cdots,k_m k1,k2,,km,使得 k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_1\alpha_1+k_2\alpha_2+ \cdots +k_m\alpha_m=0 k1α1+k2α2++kmαm=0,则称向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性相关。

线性无关:若不存在不全为零的数 k 1 , k 2 , ⋯   , k m k_1,k_2,\cdots,k_m k1,k2,,km,使得 k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_1\alpha_1+k_2\alpha_2+ \cdots +k_m\alpha_m=0 k1α1+k2α2++kmαm=0,则称向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性无关。

判断线性相关性的七大定理

  • 向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性相关的充要条件是向量组中至少有一个向量可由其余的 n − 1 n-1 n1个向量线性表出。
  • 若向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性无关,而 β , α 1 , α 2 , ⋯   , α m \beta,\alpha_1,\alpha_2,\cdots,\alpha_m β,α1,α2,αm线性相关,则 β \beta β可由 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性表示,且表示法唯一。
  • 如果向量组 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,βt可由 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性表示,且 t > s t>s t>s,则 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,βt线性相关(以少表多,多的相关)
  • 设有 m m m n n n维列向量 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm A = [ α 1 , α 2 , ⋯   , α m ] A=[\alpha_1,\alpha_2,\cdots,\alpha_m] A=[α1,α2,αm],则向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性相关的充分必要条件是 A x = 0 Ax=0 Ax=0有非零解。
  • 向量 β \beta β可由向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性表出    ⟺    \iff 非齐次线性方程组 A x = β Ax=\beta Ax=β有解    ⟺    r ( [ α 1 , α 2 , ⋯   , α m ] ) = r [ α 1 , α 2 , ⋯   , α m , β ] ) \iff r([\alpha_1,\alpha_2,\cdots,\alpha_m])=r[\alpha_1,\alpha_2,\cdots,\alpha_m,\beta]) r([α1,α2,αm])=r[α1,α2,,αm,β])
  • 如果向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm中有一部分向量线性相关,则整个向量组线性相关。
  • 如果一组 n n n维向量 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,αs线性无关,那么把这些向量各任意添加m个分量所得到的新向量 ( n + m (n+m (n+m ) ) ) α 1 ∗ , α 2 ∗ , ⋯   , α s ∗ \alpha_1^*,\alpha_2^*,\cdots,\alpha_s^* α1,α2,αs也是线性无关的;如果 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,αs相信相关,那么他们各去掉相同的若干分量所得到的新向量组也是线性相关的。(原来无关 ⇒ \Rightarrow 延长无关,原来相关 ⇒ \Rightarrow 缩短必相关)

极大线性无关组、等价向量组、向量组的秩

极大线性无关组

在向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,αs中,若存在部分组 α i 1 , α i 2 , ⋯   , α i r \alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}} αi1,αi2,αir满足

  • α i 1 , α i 2 , ⋯   , α i r \alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}} αi1,αi2,αir线性无关
  • 向量组中的任一向量 α i \alpha_i αi均可由 α i 1 , α i 2 , ⋯   , α i r \alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}} αi1,αi2,αir线性表出

则称 α i 1 , α i 2 , ⋯   , α i r \alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}} αi1,αi2,αir是缘相连组的一组极大线性无关组

等价向量组

两个可以相互线性表出的向量组是等价向量组 r ( I ) = r ( I I ) = r ( I , I I ) r(I)=r(II)=r(I,II) r(I)=r(II)=r(I,II)

向量组的秩

向量组的极大线性无关组中所包含向量的个数r称为向量组的秩,记为 r a n k ( α 1 , α 2 , ⋯   , α s ) = r rank(\alpha_1,\alpha_2,\cdots,\alpha_s)=r rank(α1,α2,αs)=r r ( α 1 , α 2 , ⋯   , α s ) = r r(\alpha_1,\alpha_2,\cdots,\alpha_s)=r r(α1,α2,αs)=r

性质

  • 三秩相同: r ( A ) (矩阵的秩) = A 的行秩( A 的行向量的秩) = A 的列秩( A 的列向量的秩) r(A)(矩阵的秩)=A的行秩(A的行向量的秩)=A的列秩(A的列向量的秩) r(A)(矩阵的秩)=A的行秩(A的行向量的秩)=A的列秩(A的列向量的秩)
  • A A A经过初等行变换得到 B B B,则 A A A B B B的行向量组是等价向量组, A A A B B B的扔和相应的部分列向量组具有相同的线性相关性
  • 向量组 β 1 , β 2 , ⋯   , β t \beta_1,\beta_2,\cdots,\beta_t β1,β2,βt可由 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,αm线性表示,则 r ( β 1 , β 2 , ⋯   , β t ) ⩽ r ( α 1 , α 2 , ⋯   , α m ) r(\beta_1,\beta_2,\cdots,\beta_t) \leqslant r(\alpha_1,\alpha_2,\cdots,\alpha_m) r(β1,β2,βt)r(α1,α2,αm)

向量空间

概念

ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn是n维向量空间 R n R^n Rn线性无关的有序向量组,则任一向量 α ∈ R n \alpha \in R^n αRn均可由 ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn线性表出,记表出式为 α = a 1 ξ 1 + a 2 ξ 2 + ⋯ + a n ξ n \alpha =a_1\xi_1+a_2\xi_2+\cdots+a_n\xi_n α=a1ξ1+a2ξ2++anξn,称有序向量组 ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn R n R^n Rn的一个,基向量的个数 n n n称为向量空间的维数,而 [ a 1 , a 2 , ⋯   , a n ] [a_1,a_2,\cdots,a_n] [a1,a2,,an]称为向量 α \alpha α在基 ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn下的坐标,或称为 α \alpha α坐标行向量

基变换
[ η 1 , η 2 , ⋯ , η n ] = [ ξ 1 , ξ 2 , ⋯   , ξ n ] C (*) [\eta_1,\eta_2,\cdots,\eta_n]=[\xi_1,\xi_2,\cdots,\xi_n]C \tag{*} [η1,η2,ηn]=[ξ1,ξ2,,ξn]C(*)
矩阵 C C C称为由基 ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn到基 η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn的过渡矩阵

坐标变换
α = [ ξ 1 , ξ 2 , ⋯   , ξ n ] x = [ η 1 , η 2 , ⋯   , η n ] y = [ ξ 1 , ξ 2 , ⋯   , ξ n ] C y \alpha =[\xi_1,\xi_2,\cdots,\xi_n]\pmb x=[\eta_1,\eta_2,\cdots,\eta_n]\pmb y=[\xi_1,\xi_2,\cdots,\xi_n]C\pmb y α=[ξ1,ξ2,,ξn]x=[η1,η2,,ηn]y=[ξ1,ξ2,,ξn]Cy

x = C y (坐标变换公式) \pmb x = C \pmb y\tag{坐标变换公式} x=Cy(坐标变换公式)

特征值与特征向量

特征值与特征向量

A A A n n n阶矩阵, λ \lambda λ是一个数,若存在 n n n非零列向量 ξ ≠ 0 \xi \neq 0 ξ=0,使得 A ξ = λ ξ A\xi=\lambda \xi Aξ=λξ,则称 λ \lambda λ A A A特征值 ξ \xi ξ A A A的对应于特征值 λ \lambda λ特征向量

∣ λ E − A ∣ = 0 \mid \lambda E-A\mid =0 λEA∣=0称为A的特征方程,有 n n n个根, λ E − A \lambda E-A λEA被称为特征矩阵,$\mid \lambda E-A\mid $被称为特征多项式

特征值的性质

  • ∑ i = 1 n λ i = ∑ i = 1 n a i i = t r ( A ) [ 对角线元素 ] \sum_{i=1}^n\lambda_i=\sum_{i=1}^na_{ii}=tr(A)[对角线元素] i=1nλi=i=1naii=tr(A)[对角线元素]
  • ∏ i = 1 n λ i = ∣ A ∣ \prod_{i=1}^n\lambda_i=\mid A\mid i=1nλi=∣A

特征向量的性质

  • k k k重特征值 λ \lambda λ至多只有 k k k个线性无关的特征向量, λ \lambda λ s s s个线性无关的特征向量,称 k k k为特征值 λ \lambda λ代数重数 s s s为特征值 λ \lambda λ的几何重数
  • ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2 A A A的属于不同特征 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的特征向量,则 ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2线性无关
  • ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2 A A A的属于同一特征值 λ \lambda λ的特征向量,则 k 1 ξ 1 + k 2 ξ 2 k_1\xi_1+k_2\xi_2 k1ξ1+k2ξ2仍是 A A A的属于特征值 λ \lambda λ的特征向量
  • ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2 A A A的属于不同特征值 λ \lambda λ的特征向量,则 k 1 ξ 1 + k 2 ξ 2 k_1\xi_1+k_2\xi_2 k1ξ1+k2ξ2不是 A A A的特征向量

A A A有关的常用的特征值和特征向量
矩阵 A k A A k f ( A ) A − 1 A ∗ P − 1 A P 特征值 λ k λ λ k f ( λ ) 1 λ ∣ A ∣ λ λ 特征向量 ξ ξ ξ ξ ξ ξ P − 1 ξ \begin{matrix} &矩阵 &A &kA &A^k &f(A) &A^{-1} &A^* &P^{-1}AP\\ &特征值 & \lambda &k\lambda &\lambda^k &f(\lambda) &\frac{1}{\lambda}&\frac{|A|}{\lambda}&\lambda\\ &特征向量 &\xi &\xi &\xi&\xi&\xi&\xi&P^{-1}\xi \end{matrix} 矩阵特征值特征向量AλξkAξAkλkξf(A)f(λ)ξA1λ1ξAλAξP1APλP1ξ

上下三角的特征值就是对角线元素

矩阵的相似

A A A B B B是两个 n n n阶方程,若存在 n n n阶可逆矩阵 P P P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则 A A A相似于 B B B,记作 A ∼ B A \sim B AB

性质

  • A ∼ B A \sim B AB,则

    • r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)

    • ∣ A ∣ = ∣ B ∣ \mid A\mid =\mid B\mid A∣=∣B

    • t r ( A ) = t r ( B ) tr(A)=tr(B) tr(A)=tr(B)

    • A , B A,B A,B有相同的特征值(或 ∣ λ E − A ∣ = ∣ λ E − B ∣ \mid \lambda E-A\mid =\mid \lambda E -B\mid λEA∣=∣λEB

    • A − 1 ∼ B − 1 、 A T ∼ B T 、 A ∗ ∼ B ∗ A^{-1}\sim B^{-1}、A^T \sim B^T、A^* \sim B^* A1B1ATBTAB

    • f ( A ) ∼ f ( B ) 、 A m ∼ B m f(A) \sim f(B)、A^m \sim B^m f(A)f(B)AmBm

  • A ∼ B , B ∼ C ⟹ A ∼ C A \sim B,B \sim C \Longrightarrow A \sim C AB,BCAC

  • A ∼ C , B ∼ D ⟹ ∣ A O O B ∣ ∼ ∣ C O O D ∣ A\sim C,B \sim D \Longrightarrow \begin{vmatrix}\pmb A&\pmb O\\\pmb O&\pmb B\\\end{vmatrix} \sim \begin{vmatrix}\pmb C&\pmb O\\\pmb O&\pmb D\\\end{vmatrix} AC,BD AOOB COOD

矩阵的相似对角化

n n n阶矩阵 A A A,若存在 n n n阶可逆矩阵 P P P,使得 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ,其中 Λ \Lambda Λ是对角矩阵,则称 A A A可相似对角化 Λ \Lambda Λ A A A相似标准形
Λ = ∣ λ 1 λ 2 ⋱ λ n ∣ \Lambda=\begin{vmatrix} \lambda_1&&&\\ &\lambda_2&&\\ &&\ddots&\\ &&&\lambda_n\\ \end{vmatrix} Λ= λ1λ2λn

矩阵可相似对角化的条件

充要条件
  • A ∼ Λ    ⟺    n A \sim \Lambda\iff n AΛn​个线性无关的特征向量
  • A ∼ Λ    ⟺    A A \sim \Lambda\iff A AΛA对应于每个 k i k_i ki重特征值都有 k i k_i ki个线性无关的特征向量
充分条件
  • A A A是实对称矩阵 ⟹ A ∼ Λ \Longrightarrow A \sim \Lambda AΛ
  • A A A n n n个互异特征值 ⟹ A ∼ Λ \Longrightarrow A \sim \Lambda AΛ
  • A 2 = A ⟹ A ∼ Λ A^2=A \Longrightarrow A \sim \Lambda A2=AAΛ
  • A 2 = E ⟹ A ∼ Λ A^2=E \Longrightarrow A \sim \Lambda A2=EAΛ
  • r ( A ) = 1 且 t r ( A ) ≠ 0 ⟹ A ∼ Λ r(A)=1且tr(A)\neq 0\Longrightarrow A \sim \Lambda r(A)=1tr(A)=0AΛ

必要条件

A ∼ Λ ⟹ r ( A ) = A \sim \Lambda \Longrightarrow r(A)= AΛr(A)=非零特征值的个数

否定条件

  • A ≠ O , A k = O ⟹ A A\neq O,A^k=O\Longrightarrow A A=O,Ak=OA不可相似对角化
  • A A A的特征值全为 k k k但 $ A \neq kE \Longrightarrow A$不可相似对角化

实对称矩阵

  • A A A是实对称矩阵,则 A A A的特征值是实数,特征向量是实向量
  • 不同特征值的特征向量相互正交
  • 可用正交矩阵相似对角化

正交矩阵

  • A A A为正交矩阵,则

A T A = E    ⟺    A − 1 = A T    ⟺    A 由规范正交基组成    ⟺    A T , A − 1 , A ∗ , − A 都是正交矩阵 \begin{aligned} A^TA=E &\iff A^{-1}=A^T\\ &\iff A由规范正交基组成\\ &\iff A^T,A^{-1},A^*,-A都是正交矩阵 \end{aligned} ATA=EA1=ATA由规范正交基组成AT,A1,A,A都是正交矩阵

  • A , B A,B A,B为同阶正交矩阵,则 A B AB AB为正交矩阵, A + B A+B A+B不一定

二次型

二次型的定义及其矩阵表达式

n元二次型,简称二次型
f ( x 1 , x 2 , . . . , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + ⋯ + 2 a 1 n x 1 x n a 22 x 2 2 + ⋯ + 2 a 2 n x 2 x n + ⋯ + a n n x n 2 \begin{aligned} f(x_1,x_2,...,x_n)=a_{11}x_1^2+2a_{12}x_1x_2+ \cdots + &2a_{1n}x_1x_n\\ a_{22}x_2^2+ \cdots +&2a_{2n}x_2x_n\\ +\cdots&\\ +&a_{nn}x_n^2 \end{aligned} f(x1,x2,...,xn)=a11x12+2a12x1x2++a22x22++++2a1nx1xn2a2nx2xnannxn2
a i j = a j i ⟹ 2 a i j x i x j = a i j x i x j + a j i x j x i a_{ij}=a_{ji} \Longrightarrow 2a_{ij}x_ix_j=a_{ij}x_ix_j+a_{ji}x_jx_i aij=aji2aijxixj=aijxixj+ajixjxi,则
f ( x 1 , x 2 , . . . , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j = x T A x f(x_1,x_2,...,x_n)=\sum_{i=1}^n\sum_{j=1}^na_{ij}x_ix_j=x^TAx f(x1,x2,...,xn)=i=1nj=1naijxixj=xTAx

A = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ , x = ∣ x 1 x 2 ⋮ x n ∣ A=\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{vmatrix}, x=\begin{vmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{vmatrix} A= a11a21an1a12a22an2a1na2nann ,x= x1x2xn

A A A称为二次型 f ( x ) f(x) f(x)的矩阵 A A A是一个对称矩阵,是唯一的。

合同变换

定义

合同变换

  • 定义:设 A A A, B B B n n n阶实对称矩阵,若存在可逆矩阵 C C C,使得 C T A C = B C^TAC=B CTAC=B,则称 A A A B B B合同,记作 A ≃ B A\simeq B AB
  • 用正、负惯性指数: A , B A,B A,B合同    ⟺    p A = p B , q A = q B \iff p_A=p_B,q_A=q_B pA=pB,qA=qB(相同的正、负惯性指数)
  • 用传递性

线性变换

x = C y x=Cy x=Cy

称为从 y 1 , y 2 , ⋯   , y n y_1,y_2,\cdots,y_n y1,y2,,yn x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn的线性变换,若 ∣ C ∣ ≠ 0 \mid C\mid \neq 0 C=0,也称为可逆线性变换

f ( x ) = x T A , x = C y , ⇒ f ( x ) = ( C y ) T A ( C y ) = y T ( C T A C ) y = y T B y f(x)=x^TA,x=Cy, \Rightarrow f(x)=(Cy)^TA(Cy)=y^T(C^TAC)y=y^TBy f(x)=xTA,x=Cy,f(x)=(Cy)TA(Cy)=yT(CTAC)y=yTBy

性质

  • 合同变换具有反身性、对称性、传递性
  • 可逆线性变换不会改变二次型的秩
  • 对称矩阵合同的矩阵也是对称矩阵

二次型的标准形、规范形

  • 若二次型中只有平方项,没有交叉项,即 f ( x ) = d 1 x 1 2 + d 2 x 2 2 + ⋯ + d n x n 2 f(x)=d_1x_1^2+d_2x_2^2+\cdots + d_nx_n^2 f(x)=d1x12+d2x22++dnxn2 的二次型为标准形

  • 若标准形中,系数 d i d_i di仅为 1 , − 1 , 0 1,-1,0 1,1,0,称为规范形

  • 任何二次型都可通过配方法化成标准形及规范形    ⟺    \iff 任何实对称矩阵 A A A,必存在可逆矩阵 C C C,使得 C T A C = Λ C^TAC=\Lambda CTAC=Λ
    Λ = ∣ 1 − 1 0 ⋱ − 1 ∣ \Lambda=\begin{vmatrix} 1&&&&\\ &-1&&&\\ &&0&&\\ &&&\ddots&&\\ &&&&-1\\ \end{vmatrix} Λ= 1101

  • 任何二次型也可通过正交变成成标准形    ⟺    \iff 任何实对称矩阵 A A A,一定存在正交矩阵 Q Q Q,使得 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ

    Λ = ∣ λ 1 λ 2 ⋱ λ n ∣ \Lambda=\begin{vmatrix} \lambda_1&&&\\ &\lambda_2&&\\ &&\ddots&\\ &&&\lambda_n\\ \end{vmatrix} Λ= λ1λ2λn

惯性定理

无论选取什么样的可逆线性变换,将二次型化为标准形或规范形,其正向个数 p p p,负向个数 q q q都是不变的, p p p称为正惯性指数 q q q称为负惯性指数 r = p + q r=p+q r=p+q

两个二次型合同的充要条件是有相同的正、负惯性指数。

正交变换法

对于 f = x T A x f=x^TAx f=xTAx

  • A A A的特征值 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn

  • A A A对应于特征值 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn的特征向量 ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn

  • ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn正交化、单位化为 η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn

    施密特正交法 β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_1=\alpha_1,\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 β1=α1,β2=α2(β1,β1)(α2,β1)β1

  • Q = [ η 1 , η 2 , ⋯   , η n ] Q=[\eta_1,\eta_2,\cdots,\eta_n] Q=[η1,η2,,ηn],则 Q Q Q为正交矩阵,且 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ

于是
f = x T A x = ( Q y ) T A ( Q y ) = y T Λ y f=x^TAx=(Qy)^TA(Qy)=y^T\Lambda y f=xTAx=(Qy)TA(Qy)=yTΛy

正定二次型及其判别

定义

n n n元二次型 f ( x 1 , x 2 , ⋯   , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=x^TAx f(x1,x2,,xn)=xTAx.若对任意的 x = [ x 1 , x 2 , ⋯   , x n ] T ≠ 0 x=[x_1,x_2,\cdots,x_n]^T\neq 0 x=[x1,x2,,xn]T=0,均有 x T A x > 0 x^TAx>0 xTAx>0,则称 f f f正定二次型,称二次型的对应矩阵 A A A正定矩阵

前提

A = A T A=A^T A=AT

二次型正定的充要条件

n 元二次型 f = x T A x 正定    ⟺    对任意 x ≠ 0 , 有 x T A x > 0    ⟺    f 的正惯性指数 p = n    ⟺    存在可逆矩阵 D ,使 A = D T D    ⟺    A ≃ E    ⟺    A 的特征值 λ i > 0    ⟺    A 的全部顺序主子式均大于 0 \begin{aligned} n元二次型f=x^TAx正定 &\iff 对任意x \neq0,有x^TAx>0\\ &\iff f的正惯性指数p=n\\ &\iff 存在可逆矩阵D,使A=D^TD\\ &\iff A \simeq E\\ &\iff A的特征值\lambda_i>0\\ &\iff A的全部顺序主子式均大于0\\ \end{aligned} n元二次型f=xTAx正定对任意x=0,xTAx>0f的正惯性指数p=n存在可逆矩阵D,使A=DTDAEA的特征值λi>0A的全部顺序主子式均大于0

二次型正定的必要条件

  • a i i > 0 a_{ii}>0 aii>0

  • ∣ A ∣ > 0 \mid A\mid >0 A∣>0

结论

  • A A A正定,则 A − 1 , A ∗ , A m , k A ( k > 0 ) , C T A C A^{-1},A^*,A^m,kA(k>0),C^TAC A1,A,Am,kA(k>0),CTAC均正定
  • A , B A,B A,B正定,则 A + B A+B A+B正定, ∣ A O O B ∣ \begin{vmatrix}\pmb A&\pmb O\\\pmb O&\pmb B\\\end{vmatrix} AOOB 正定
  • A , B A,B A,B正定,则 A B AB AB正定的充要条件是 A B = B A AB=BA AB=BA
  • A A A正定且是正交矩阵,则 A = E A=E A=E
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的卤蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值