矩阵论(二)

矩阵分析

矩阵序列

矩阵序列收敛==矩阵分量序列收敛

设有 C m × n C^{m \times n} Cm×n中的矩阵序列 { A ( k ) } \{\pmb A^{(k)}\} {A(k)},其中 A ( k ) = ( a i j ( k ) ) m × n \pmb A^{(k)} = (a_{ij}^{(k)})_{m \times n} A(k)=(aij(k))m×n,若 lim ⁡ k → + ∞ a i j ( k ) = a i j \lim_{k \rightarrow +\infty} a_{ij}^{(k)} = a_{ij} limk+aij(k)=aij,则称矩阵序列 { A ( k ) } \{\pmb A^{(k)}\} {A(k)}收敛于 A = ( a i j ) m × n \pmb A = (a_{ij})_{m \times n} A=(aij)m×n,或称 A \pmb A A为矩阵序列 { A ( k ) } \{\pmb A^{(k)}\} {A(k)}的极限,记为
lim ⁡ k → + ∞ A ( k ) = A     o r     A ( k ) → A \lim_{k \rightarrow +\infty} \pmb A^{(k)} = \pmb A \ \ \ or \ \ \ \pmb A^{(k)} \rightarrow A k+limA(k)=A   or   A(k)A
不收敛的矩阵序列称为发散

矩阵序列收敛==矩阵范数序列收敛

A ( k ) , A ∈ C m × n \pmb A^{(k)},\pmb A \in \pmb C^{m \times n} A(k),ACm×n,则 lim ⁡ k → + ∞ A ( k ) = A \lim_{k \rightarrow +\infty} \pmb A^{(k)} = \pmb A limk+A(k)=A的充分必要条件是 lim ⁡ k → + ∞ ∥ A ( k ) − A ∥ = 0 \lim_{k \rightarrow + \infty} \parallel \pmb A^{(k)} - \pmb A \parallel =0 limk+A(k)A∥=0,其中 ∥ ⋅ ∥ \parallel \cdot \parallel C m × n C^{m \times n} Cm×n上的任一矩阵范数

  • lim ⁡ k → + ∞ ( α A ( k ) + β B ( k ) ) = α A + β B \lim_{k \rightarrow + \infty} (\alpha \pmb A^{(k)} + \beta \pmb B^{(k)}) = \alpha \pmb A + \beta \pmb B limk+(αA(k)+βB(k))=αA+βB
  • lim ⁡ k → + ∞ A ( k ) B ( k ) = A B \lim_{k \rightarrow +\infty} \pmb A^{(k)} \pmb B^{(k)} = \pmb A \pmb B limk+A(k)B(k)=AB
  • A ( k ) , A \pmb A^{(k)},\pmb A A(k),A均可逆时, lim ⁡ k → + ∞ ( A ( k ) ) − 1 = A − 1 \lim_{k \rightarrow + \infty} (\pmb A^{(k)})^{-1} = \pmb A^{-1} limk+(A(k))1=A1

收敛矩阵

  • A ∈ C m × n \pmb A \in \pmb C^{m \times n} ACm×n,若 lim ⁡ k → + ∞ A k = O \lim_{k \rightarrow + \infty} \pmb A^k = \pmb O limk+Ak=O,则 A \pmb A A收敛矩阵
  • A ∈ C m × n \pmb A \in \pmb C^{m \times n} ACm×n,则 A \pmb A A为收敛矩阵的充分必要条件是 ρ ( A ) < 1 \rho(\pmb A) <1 ρ(A)<1
  • A ∈ C m × n \pmb A \in \pmb C^{m \times n} ACm×n,若对 C m × n \pmb C^{m \times n} Cm×n上的某一矩阵范数 ∥ ⋅ ∥ \parallel \cdot \parallel ∥ A ∥ < 1 \parallel \pmb A \parallel <1 A∥<1,则 A \pmb A A为收敛矩阵

矩阵级数

C m × n \pmb C^{m \times n} Cm×n中的矩阵序列 { A ( k ) } \{\pmb A^{(k)}\} {A(k)}构成的无穷和
A ( 0 ) + A ( 1 ) + ⋯ + A ( k ) + ⋯ \pmb A^{(0)} + \pmb A^{(1)} + \cdots + \pmb A^{(k)} + \cdots A(0)+A(1)++A(k)+
称为矩阵级数,记为 ∑ k = 0 + ∞ A ( k ) \sum_{k=0}^{+\infty}\pmb A^{(k)} k=0+A(k)。对任一正整数 N N N,称 S ( N ) = ∑ k = 0 N A ( k ) \pmb S^{(N)} = \sum_{k=0}^N \pmb A^{(k)} S(N)=k=0NA(k)为矩阵级数的部分和。如果由部分和构成的矩阵序列 { S ( N ) } \{\pmb S^{(N)}\} {S(N)}收敛,且有极限 S \pmb S S,即 lim ⁡ N → + ∞ S ( N ) = S \lim_{N \rightarrow + \infty} \pmb S^{(N)} = \pmb S limN+S(N)=S,则称矩阵级数 ∑ k = 0 + ∞ A ( k ) \sum_{k=0}^{+\infty}\pmb A^{(k)} k=0+A(k)收敛,其和为 S \pmb S S
S = ∑ k = 0 + ∞ A ( k ) \pmb S = \sum_{k=0}^{+\infty} \pmb A^{(k)} S=k=0+A(k)
不收敛的矩阵级数称为发散的。

A ( k ) = ( a i j ( k ) ) m × n ∈ C m × n \pmb A^{(k)} = (a_{ij}^{(k)})_{m \times n} \in \pmb C^{ m \times n} A(k)=(aij(k))m×nCm×n。如果 m n mn mn个项数级数
∑ k = 0 + ∞ a i j ( k ) \sum_{k=0}^{+\infty}a_{ij}^{(k)} k=0+aij(k)
都绝对收敛,即 ∑ k = 0 + ∞ ∣ a i j ( k ) ∣ \sum_{k=0}^{+\infty} \mid a_{ij}^{(k)} \mid k=0+aij(k)都收敛,则称矩阵级数 ∑ k = 0 + ∞ A ( k ) \sum_{k=0}^{+\infty} \pmb A^{(k)} k=0+A(k)绝对收敛。

  • A ( k ) = ( a i j ( k ) ) m × n ∈ C m × n \pmb A^{(k)} = (a_{ij}^{(k)})_{m \times n} \in \pmb C^{ m \times n} A(k)=(aij(k))m×nCm×n,则矩阵级数 ∑ k = 0 + ∞ A ( k ) \sum_{k=0}^{+\infty}\pmb A^{(k)} k=0+A(k)绝对收敛的充分必要条件是正项级数 ∑ k = 0 + ∞ ∥ A ( k ) ∥ \sum_{k=0}^{+\infty} \parallel \pmb A^{(k)} \parallel k=0+A(k)收敛,其中 ∥ ⋅ ∥ \parallel \cdot \parallel C m × n \pmb C^{m \times n} Cm×n上任一矩阵范数

  • ∑ k = 0 + ∞ A ( k ) , ∑ k = 0 + ∞ B ( k ) \sum_{k=0}^{+\infty}\pmb A^{(k)},\sum_{k=0}^{+\infty}\pmb B^{(k)} k=0+A(k),k=0+B(k)

    • ∑ k = 0 + ∞ ( A ( k ) + B ( k ) ) = A + B \sum_{k=0}^{+\infty}(\pmb A^{(k)} + \pmb B^{(k)}) = \pmb A + \pmb B k=0+(A(k)+B(k))=A+B

    • ∀ λ ∈ C , ∑ k = 0 + ∞ λ A ( k ) = λ A \forall \lambda \in \pmb C,\sum_{k=0}^{+\infty}\lambda \pmb A^{(k)} = \lambda \pmb A λC,k=0+λA(k)=λA

    • 绝对收敛的矩阵级数必收敛,并且任意调换其项的顺序所得的矩阵级数仍收敛,且其和不变

    • 若矩阵级数 ∑ k = 0 + ∞ A ( k ) \sum_{k=0}^{+\infty} \pmb A^{(k)} k=0+A(k)收敛(或绝对收敛),则矩阵级数 ∑ k = 0 + ∞ P A ( k ) Q \sum_{k=0}^{+\infty} \pmb P \pmb A^{(k)} \pmb Q k=0+PA(k)Q也收敛(或绝对收敛),并且有
      ∑ k = 0 + ∞ P A ( k ) Q = P ( ∑ k = 0 + ∞ A ( k ) ) Q \sum_{k=0}^{+\infty} \pmb P \pmb A^{(k)} \pmb Q = \pmb P \bigg(\sum_{k=0}^{+\infty} \pmb A^{(k)} \bigg) \pmb Q k=0+PA(k)Q=P(k=0+A(k))Q

    • ∑ k = 0 + ∞ A ( k ) , ∑ k = 0 + ∞ B ( k ) \sum_{k=0}^{+\infty} \pmb A^{(k)},\sum_{k=0}^{+\infty} \pmb B^{(k)} k=0+A(k),k=0+B(k)均绝对收敛,则它们按项相乘所得的矩阵级数
      A ( 0 ) B ( 0 ) + ( A ( 0 ) B ( 1 ) + A ( 1 ) B ( 0 ) ) + ⋯ + ( A ( 0 ) B ( k ) + A ( 1 ) B ( k − 1 ) + ⋯ + A ( k ) B ( 0 ) ) + ⋯ \pmb A^{(0)} \pmb B^{(0)} + (\pmb A^{(0)} \pmb B^{(1)} + \pmb A^{(1)} \pmb B^{(0)} ) + \cdots + (\pmb A^{(0)} \pmb B^{(k)} + \pmb A^{(1)} \pmb B^{(k-1)} + \cdots + \pmb A^{(k)} \pmb B^{(0)} ) + \cdots A(0)B(0)+(A(0)B(1)+A(1)B(0))++(A(0)B(k)+A(1)B(k1)++A(k)B(0))+
      也绝对收敛,且其和为 A B \pmb A \pmb B AB

幂级数

A ( k ) ∈ C m × n , a k ∈ C \pmb A^{(k)} \in \pmb C^{ m \times n},a_k \in \pmb C A(k)Cm×n,akC,称矩阵级数
∑ k = 0 + ∞ a k A k \sum_{k=0}^{+\infty} a_k \pmb A^k k=0+akAk
为矩阵 A \pmb A A的幂级数

设幂级数 ∑ k = 0 + ∞ a k z k \sum_{k=0}^{+\infty} a_k z^k k=0+akzk的收敛半径为 r , A ∈ C n × n r,\pmb A \in \pmb C^{n \times n} r,ACn×n,则

  • ρ ( A ) < r \rho(\pmb A) <r ρ(A)<r时,矩阵幂级数 ∑ k = 0 + ∞ a k A k \sum_{k=0}^{+\infty} a_k \pmb A^k k=0+akAk绝对收敛
  • ρ ( A ) > r \rho(\pmb A) >r ρ(A)>r时,矩阵幂级数 ∑ k = 0 + ∞ a k A k \sum_{k=0}^{+\infty} a_k \pmb A^k k=0+akAk发散
  • 若存在某一范数 ∥ A ∥ < r \parallel \pmb A \parallel <r A∥<r,则矩阵幂级数 ∑ k = 0 + ∞ a k A k \sum_{k=0}^{+\infty} a_k \pmb A^k k=0+akAk绝对收敛
  • 矩阵幂级数 ∑ k = 0 + ∞ A k \sum_{k=0}^{+\infty} \pmb A^k k=0+Ak收敛的充分必要条件是 ρ ( A ) < 1 \rho(\pmb A) <1 ρ(A)<1,且收敛于 ( I − A ) − 1 (\pmb I -\pmb A)^{-1} (IA)1

矩阵函数

定义

设幂级数 ∑ k = 0 + ∞ a k z k \sum_{k=0}^{+\infty} a_k z^k k=0+akzk的收敛半径为 r r r,且当 ∣ z ∣ < r \mid z \mid <r z∣<r时,幂级数收敛于函数 f ( z ) f(z) f(z),即
f ( z ) = ∑ k = 0 + ∞ a k z k ( ∣ z ∣ < r ) f(z) = \sum_{k=0}^{+\infty} a_k z^k (\mid z \mid <r) f(z)=k=0+akzk(z∣<r)
如果 A ∈ C n × n \pmb A \in \pmb C^{n \times n} ACn×n满足 ρ ( A ) < r \rho(\pmb A)<r ρ(A)<r,则称收敛的矩阵幂级数 ∑ k = 0 + ∞ a k A k \sum_{k=0}^{+\infty} a_k \pmb A^k k=0+akAk的和仍为矩阵函数,记为 f ( A ) f(\pmb A) f(A)
f ( A ) = ∑ k = 0 + ∞ a k A k f(\pmb A) = \sum_{k=0}^{+\infty} a_k \pmb A^k f(A)=k=0+akAk

e A = ∑ k = 0 + ∞ 1 k ! A k sin ⁡ A = ∑ k = 0 + ∞ ( − 1 ) k ( 2 k + 1 ) ! A 2 k + 1 cos ⁡ A = ∑ k = 0 + ∞ ( − 1 ) k ( 2 k ) ! A 2 k ( I − A ) − 1 = ∑ k = 0 + ∞ A k , ρ ( A ) < 1 ln ⁡ ( I + A ) = ∑ k = 0 + ∞ ( − 1 ) k k + 1 A k + 1 , ρ ( A ) < 1 \begin{aligned} &e^{\pmb A} = \sum_{k=0}^{+\infty}\cfrac1{k!} \pmb A^k \\ &\sin \pmb A = \sum_{k=0}^{+\infty} \cfrac{(-1)^k}{(2k+1)!}\pmb A^{2k+1}\\ &\cos \pmb A = \sum_{k=0}^{+\infty} \cfrac{(-1)^k}{(2k)!} \pmb A^{2k} \\ &(\pmb I -\pmb A)^{-1} = \sum_{k=0}^{+\infty}\pmb A^k,\rho(\pmb A)<1\\ &\ln(\pmb I + \pmb A) = \sum_{k=0}^{+\infty} \cfrac{(-1)^k}{k+1}\pmb A^{k+1},\rho(\pmb A)<1 \end{aligned} eA=k=0+k!1AksinA=k=0+(2k+1)!(1)kA2k+1cosA=k=0+(2k)!(1)kA2k(IA)1=k=0+Ak,ρ(A)<1ln(I+A)=k=0+k+1(1)kAk+1,ρ(A)<1

计算

  • 利用 H a m i l t o n − C a y l e y \rm Hamilton- Cayley HamiltonCayley定理找出矩阵方幂之间的关系进行化简

  • 利用相似对角化

    P − 1 A P = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) = Λ ⇒ f ( A ) = P d i a g ( f ( λ 1 ) , f ( λ 2 ) , ⋯   , f ( λ n ) P − 1 \pmb P^{-1} \pmb A \pmb P = diag(\lambda_1,\lambda_2,\cdots,\lambda_n) = \Lambda \Rightarrow f(\pmb A) = \pmb P diag(f(\lambda_1),f(\lambda_2),\cdots,f(\lambda_n) \pmb P^{-1} P1AP=diag(λ1,λ2,,λn)=Λf(A)=Pdiag(f(λ1),f(λ2),,f(λn)P1

  • 利用 J o r d a n \rm Jordan Jordan标准形
    f ( A t ) = P [ f ( J 1 t ) ⋱ f ( J s t ) ] P − 1 f(\pmb A t) = \pmb P \begin{bmatrix} f(\pmb J_1t) & & \\ &\ddots &\\ && f(\pmb J_st) \end{bmatrix} \pmb P^{-1} f(At)=P f(J1t)f(Jst) P1

    f ( J i t ) = [ f ( λ ) t 1 ! f ′ ( λ ) ⋯ t r i − 1 ( r i − 1 ) ! f ( r i − 1 ) ( λ ) f ( λ ) ⋱ ⋮ ⋱ t 1 ! f ′ ( λ ) f ( λ ) ] λ = λ i t f(\pmb J_i t) = \begin{bmatrix} f(\lambda) & \frac{t}{1!}f^\prime(\lambda) &\cdots &\frac{t^{r_i-1}}{(r_i-1)!}f^{(r_i-1)}(\lambda) \\ & f(\lambda) &\ddots &\vdots \\ &&\ddots &\frac{t}{1!}f^\prime(\lambda) \\ &&&f(\lambda) \end{bmatrix}_{\lambda = \lambda_i t} f(Jit)= f(λ)1!tf(λ)f(λ)(ri1)!tri1f(ri1)(λ)1!tf(λ)f(λ) λ=λit

  • 待定系数法

    • 求矩阵 A \pmb A A的特征多项式(最高项为 n n n)(如果得到最小多项式则更简单

    • r ( λ ) = b n − 1 λ n − 1 + ⋯ + b 1 λ + b 0 r(\lambda) = b_{n-1}\lambda^{n-1}+ \cdots + b_{1}\lambda + b_0 r(λ)=bn1λn1++b1λ+b0,根据
      r ( l ) ( λ i ) = t l f ( l ) ( λ ) ∣ λ = λ i t r^{(l)}(\lambda_i) = t^lf^{(l)}(\lambda)\mid_{\lambda = \lambda_i t} r(l)(λi)=tlf(l)(λ)λ=λit
      或者
      r ( l ) ( λ i ) = f ( l ) ( λ t ) ∣ λ = λ i r^{(l)}(\lambda_i) = f^{(l)}(\lambda t)\mid_{\lambda = \lambda_i} r(l)(λi)=f(l)(λt)λ=λi
      列方程组求解 b 0 , b 1 , ⋯   , b n − 1 b_0,b_1,\cdots,b_{n-1} b0,b1,,bn1

    • 计算 f ( A t ) = r ( A ) = b n − 1 A n − 1 + ⋯ + b 1 A + b 0 I f(\pmb At) = r(A) = b_{n-1}\pmb A^{n-1}+ \cdots + b_{1}\pmb A + b_0 \pmb I f(At)=r(A)=bn1An1++b1A+b0I

性质

  • sin ⁡ ( A ) = − sin ⁡ A , cos ⁡ ( − A ) = cos ⁡ A \sin(\pmb A) = -\sin \pmb A,\cos (-\pmb A) = \cos \pmb A sin(A)=sinA,cos(A)=cosA

  • e i A = cos ⁡ A + i sin ⁡ A e^{i \pmb A} = \cos \pmb A + i\sin \pmb A eiA=cosA+isinA

  • cos ⁡ A = 1 2 ( e i A + e − i A ) , sin ⁡ A = 1 2 i ( e i A − e − i A ) \cos \pmb A = \cfrac12 (e^{i \pmb A} + e^{-i \pmb A}),\sin \pmb A = \cfrac1{2i}(e^{i\pmb A}- e^{-i\pmb A}) cosA=21(eiA+eiA),sinA=2i1(eiAeiA)

  • e A + B = e A e B = e B e A e^{\pmb A+\pmb B} = e^{\pmb A}e^{\pmb B} = e^{\pmb B}e^{\pmb A} eA+B=eAeB=eBeA

  • sin ⁡ ( A + B ) = sin ⁡ A cos ⁡ B + cos ⁡ A sin ⁡ B , ( A B = B A ) \sin(\pmb A + \pmb B) = \sin \pmb A \cos \pmb B + \cos \pmb A \sin \pmb B,(\pmb A\pmb B=\pmb B\pmb A) sin(A+B)=sinAcosB+cosAsinB,(AB=BA)

  • cos ⁡ ( A + B ) = cos ⁡ A cos ⁡ B − sin ⁡ A sin ⁡ B , ( A B = B A ) \cos(\pmb A + \pmb B) = \cos \pmb A \cos \pmb B - \sin \pmb A \sin \pmb B,(\pmb A\pmb B=\pmb B\pmb A) cos(A+B)=cosAcosBsinAsinB,(AB=BA)

  • cos ⁡ 2 A = cos ⁡ 2 A − sin ⁡ 2 A \cos {2\pmb A} = \cos ^2 \pmb A - \sin ^2\pmb A cos2A=cos2Asin2A

  • sin ⁡ 2 A = 2 sin ⁡ A cos ⁡ A \sin 2\pmb A = 2\sin \pmb A \cos \pmb A sin2A=2sinAcosA

  • det ⁡ e A = e t r A \det e^{\pmb A} = e^{tr \pmb A} deteA=etrA

  • ( e A ) − 1 = e − A (e^{\pmb A})^{-1} = e^{-\pmb A} (eA)1=eA

矩阵的微分与积分

函数矩阵的微分与积分

以变量 t t t的函数为元素的矩阵 A ( t ) = ( a i j ( t ) ) m × n \pmb A(t) = (a_{ij}(t))_{m \times n} A(t)=(aij(t))m×n称为函数矩阵。如果 t ∈ [ a , b ] t\in [a,b] t[a,b],则 A ( t ) \pmb A(t) A(t)的定义域为 [ a , b ] [a,b] [a,b],如果每个 a i j ( t ) a_{ij}(t) aij(t)都在 [ a , b ] [a,b] [a,b]上连续、可微、可积,则称 A ( t ) \pmb A(t) A(t) [ a , b ] [a,b] [a,b]上是连续、可微、可积。当 A ( t ) \pmb A(t) A(t)可微时,规定其导数为
A ′ ( t ) = ( a i j ′ ( t ) ) m × n   o r   d d t A ( t ) = ( d d t a i j ( t ) ) m × n \pmb A^\prime(t) = (a_{ij}^\prime(t))_{m \times n } \ or \ \frac{d}{dt}\pmb A(t) = \Big(\frac d{dt}a_{ij}(t)\Big)_{m \times n} A(t)=(aij(t))m×n or dtdA(t)=(dtdaij(t))m×n
A ( t ) \pmb A(t) A(t) [ a , b ] [a,b] [a,b]上可积时,规定 A ( t ) \pmb A(t) A(t) [ a , b ] [a,b] [a,b]上的积分为
∫ a b A ( t ) d t = ( ∫ a b a i j ( t ) d t ) m × n \int_a^b \pmb A(t)dt = \Big(\int_a^ba_{ij}(t)dt\Big)_{m\times n } abA(t)dt=(abaij(t)dt)m×n

求导法则

A ( t ) \pmb A(t) A(t) B ( t ) \pmb B(t) B(t)是适当阶的可微矩阵,则

  • d d t ( A ( t ) + B ( t ) ) = d d t A ( t ) + d d t B ( t ) \cfrac{d}{dt}(\pmb A(t) + \pmb B(t)) = \cfrac{d}{dt}\pmb A(t) + \cfrac{d}{dt}\pmb B(t) dtd(A(t)+B(t))=dtdA(t)+dtdB(t)

  • λ ( t ) \lambda(t) λ(t)为可微函数时,有
    d d t ( λ ( t ) A ( t ) ) = ( d d t λ ( t ) ) A ( t ) + λ ( t ) d d t A ( t ) \cfrac{d}{dt}(\lambda(t) \pmb A(t)) = \bigg(\cfrac{d}{dt}\lambda(t) \bigg)\pmb A(t) + \lambda(t) \cfrac{d}{dt}\pmb A(t) dtd(λ(t)A(t))=(dtdλ(t))A(t)+λ(t)dtdA(t)

  • d d t ( A ( t ) B ( t ) ) = ( d d t A ( t ) ) B ( t ) + A ( t ) d d t B ( t ) \cfrac{d}{dt}(\pmb A(t) \pmb B(t)) = \bigg(\cfrac{d}{dt} \pmb A(t)\bigg)\pmb B(t) + \pmb A(t) \cfrac{d}{dt} \pmb B(t) dtd(A(t)B(t))=(dtdA(t))B(t)+A(t)dtdB(t)

  • u = f ( t ) u=f(t) u=f(t)关于 t t t可微时,有
    d d t A ( u ) = f ′ ( t ) d d t A ( u ) \cfrac{d}{dt}\pmb A(u) = f^\prime(t) \cfrac{d}{dt}\pmb A(u) dtdA(u)=f(t)dtdA(u)

  • A − 1 ( t ) \pmb A^{-1}(t) A1(t)是可微矩阵时,有
    d d t ( A − 1 ( t ) ) = − A − 1 ( t ) ( d d t A ( t ) ) A − 1 ( t ) \frac d{dt}(\pmb A^{-1}(t)) = -\pmb A^{-1}(t) \bigg(\frac d{dt} \pmb A(t) \bigg) \pmb A^{-1}(t) dtd(A1(t))=A1(t)(dtdA(t))A1(t)

特定求导公式
  • d d t e A t = A e A t = e A t A \cfrac{d}{dt} e^{\pmb A t} =\pmb A e^{\pmb A t} = e^{\pmb A t} \pmb A dtdeAt=AeAt=eAtA
  • d d t sin ⁡ A t = A cos ⁡ A t = ( cos ⁡ A t ) A \cfrac{d}{dt} \sin \pmb At = \pmb A \cos \pmb A t = (\cos \pmb At) \pmb A dtdsinAt=AcosAt=(cosAt)A
  • d d t cos ⁡ A t = − A sin ⁡ A t = − ( sin ⁡ A t ) A \cfrac{d}{dt} \cos\pmb At = -\pmb A \sin\pmb A t = -(\sin\pmb At) \pmb A dtdcosAt=AsinAt=(sinAt)A
积分公式
  • ∫ a b ( A ( t ) + B ( t ) ) d t = ∫ a b A ( t ) d t + ∫ a b B ( t ) d t \int_a^b (\pmb A(t) + \pmb B(t))dt = \int_a^b\pmb A(t)dt + \int_a^b\pmb B(t)dt ab(A(t)+B(t))dt=abA(t)dt+abB(t)dt

  • ∫ a b λ A ( t ) = λ ∫ a b A ( t ) d t \int_a^b\lambda\pmb A(t) = \lambda \int_a^b\pmb A(t)dt abλA(t)=λabA(t)dt

  • ∫ a b A ( t ) B d t = ( ∫ a b A ( t ) d t ) B , ∫ a b A B ( t ) d t = A ∫ a b B ( t ) d t \int_a^b\pmb A(t)\pmb Bdt = (\int_a^b\pmb A(t)dt) \pmb B,\int_a^b\pmb A\pmb B(t)dt = \pmb A \int_a^b \pmb B(t)dt abA(t)Bdt=(abA(t)dt)B,abAB(t)dt=AabB(t)dt

  • A ( t ) \pmb A(t) A(t) [ a , b ] [a,b] [a,b]上连续可微时, ∀ t ∈ ( a , b ) \forall t \in (a,b) t(a,b),有
    d d t ( ∫ a t A ( τ ) d τ ) = A ( t ) \frac d {dt} (\int_a^t \pmb A(\tau) d\tau) = \pmb A(t) dtd(atA(τ)dτ)=A(t)

  • A ( t ) \pmb A(t) A(t) [ a , b ] [a,b] [a,b]上连续可微时,有
    d d t A ′ ( t ) d t = A ( b ) − A ( a ) \frac d{dt} \pmb A^\prime(t) dt = \pmb A(b) - \pmb A(a) dtdA(t)dt=A(b)A(a)

数量函数对矩阵变量的导数

f ( X ) f(\pmb X) f(X)是以矩阵 X = ( x i j ) m × n \pmb X = (x_{ij})_{m \times n} X=(xij)m×n为自变量的 m n mn mn元函数,且 ∂ f ∂ x i j \cfrac {\partial f}{\partial x_{ij}} xijf都存在,规定 f f f对矩阵变量 X \pmb X X的导数 d f d X \cfrac{df}{d\pmb X} dXdf
d f d X = ( ∂ f ∂ x i j ) m × n = [ ∂ f ∂ x 11 ⋯ ∂ f ∂ x 1 n ⋮ ⋮ ∂ f ∂ x m 1 ⋯ ∂ f ∂ x m n ] \frac {df}{d\pmb X} = (\frac{\partial f}{\partial x_{ij}})_{m \times n} = \begin{bmatrix} \cfrac{\partial f}{\partial x_{11}} & \cdots &\cfrac{\partial f}{\partial x_{1n}} \\ \vdots & &\vdots\\ \cfrac{\partial f}{\partial x_{m1}} & \cdots &\cfrac{\partial f}{\partial x_{mn}} \\ \end{bmatrix} dXdf=(xijf)m×n= x11fxm1fx1nfxmnf
特别的,以 x = ( ξ 1 , ξ 2 , ⋯   , ξ n ) T \pmb x = (\xi_1,\xi_2,\cdots,\xi_n)^T x=(ξ1,ξ2,,ξn)T为自变量的函数 f ( x ) f(\pmb x) f(x)的导数
d f d x = ( ∂ f ∂ ξ 1 , ∂ f ∂ ξ 2 , ⋯   , ∂ f ∂ ξ n ) T \frac{d f}{d \pmb x} = (\frac{\partial f}{\partial \xi_1},\frac{\partial f}{\partial \xi_2},\cdots,\frac{\partial f}{\partial \xi_n})^T dxdf=(ξ1f,ξ2f,,ξnf)T
称为数量函数对向量变量的导数,即为在数学分析中的 f f f的梯度向量,记为 grad   f \text{grad} \ \ f grad  f

d ( t r ( A X ) ) d X = A T \frac{d (tr(\pmb A\pmb X))}{d \pmb X} = \pmb A^T dXd(tr(AX))=AT
d ( x T A x ) d x = ( A + A T ) x \frac{d(\pmb x^T \pmb A \pmb x)}{d \pmb x} = (\pmb A + \pmb A^T) \pmb x dxd(xTAx)=(A+AT)x
d d X det ⁡ X = ( det ⁡ X ) ( X − 1 ) T \frac{d}{d \pmb X} \det \pmb X = (\det \pmb X)(\pmb X^{-1})^T dXddetX=(detX)(X1)T

矩阵值函数对矩阵变量的导数

矩阵分析应用举例

求解一阶线性常系数微分方程组

KaTeX parse error: Undefined control sequence: \cases at position 2: \̲c̲a̲s̲e̲s̲{ \cfrac{d\pmb …

e A t = b 1 ( t ) A + b 0 ( t ) I , A x = λ x ⟹ e A t x = [ b 1 ( t ) λ + b 0 ( t ) ] x ⟹ e − A t x = [ b 1 ( − t ) λ + b 0 ( − t ) ] x \begin{aligned} &e^{\pmb At} = b_1(t)\pmb A +b_0(t) \pmb I \pmb ,A \pmb x = \lambda \pmb x \\ \Longrightarrow &e^{\pmb At} \pmb x = [b_1(t) \lambda +b_0(t) ] \pmb x \\ \Longrightarrow&e^{-\pmb At} \pmb x = [b_1(-t) \lambda +b_0(-t) ] \pmb x \end{aligned} eAt=b1(t)A+b0(t)I,Ax=λxeAtx=[b1(t)λ+b0(t)]xeAtx=[b1(t)λ+b0(t)]x

求解矩阵方程

A X + X B = F AX+XB=F AX+XB=F
如果 A , B A,B A,B的所有特征值都具有非负实部,则有唯一解
X = − ∫ 0 + ∞ e A t F e B t d t X = - \int_0^{+\infty} e^{At}Fe^{Bt}dt X=0+eAtFeBtdt

最小二乘问题

对于矛盾方程组
∥ A x 0 − b ∥ 2 = min ⁡ x ∈ C n ∥ A x − b ∥ 2 \parallel Ax_0 - b \parallel_2 = \min_{x\in C^n} \parallel Ax-b \parallel_2 Ax0b2=xCnminAxb2
A , b A,b A,b分别为实数矩阵和向量时,解为
A T A x = A T b (法方程组) A^TAx = A^Tb \tag{法方程组} ATAx=ATb(法方程组)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的卤蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值