矩阵论(三)

矩阵分解

矩阵的三角分解

A ∈ C n n × n , Δ k ≠ 0    ⟺    A = L R    ⟺    有唯一解 { Doolittle , L is unit lower triangle Crout , R is unit upper triangle  LDR  \begin{aligned} A \in C^{n \times n}_n,\Delta_k \neq 0 &\iff A=LR \\ &\iff 有唯一解 \begin{cases} \text{Doolittle , L is unit lower triangle}\\ \text{Crout , R is unit upper triangle } \\ \text{LDR }\\ \end{cases} \end{aligned} ACnn×n,Δk=0A=LR有唯一解 Doolittle , L is unit lower triangleCrout , R is unit upper triangle LDR 

A ∈ C r n × n , Δ k ≠ 0 ⇒ A = L R A \in C^{n \times n}_r,\Delta_k \neq 0 \Rightarrow A = LR ACrn×n,Δk=0A=LR

A ∈ C n × n , A 是 H e r m i t e 正定矩阵 ⇒ A = G G H (Cholesky) A \in C^{n \times n},A是Hermite正定矩阵 \Rightarrow A = GG^H \tag{Cholesky} ACn×n,AHermite正定矩阵A=GGH(Cholesky)

QR分解

Houseloder Matrix

H = I − 2 u u H , u H u = 1 (Householder Matrix) H = I - 2uu^H,u^Hu = 1 \tag{Householder Matrix} H=I2uuH,uHu=1(Householder Matrix)
y = H x , H is Householder Matrix (Householder change) y = Hx ,\text{H is Householder Matrix} \tag{Householder change} y=Hx,H is Householder Matrix(Householder change)
H H = H ,  Hermite Matrix H H H = I ,  Uintary Matrix H 2 = I H − 1 = H [ I r O O H ]  is n+r Householder Matrix d e t H = − 1 \begin{aligned} & H^H = H ,\text{ Hermite Matrix} \\ &H^HH = I ,\text{ Uintary Matrix} \\ &H^2 = I \\ & H^{-1} = H \\ & \begin{bmatrix} I_r &O \\ O &H\end{bmatrix} \text{ is n+r Householder Matrix} \\ &det H = -1 \end{aligned} HH=H, Hermite MatrixHHH=I, Uintary MatrixH2=IH1=H[IrOOH] is n+r Householder MatrixdetH=1

∀ x ∈ C n , ∃ H  is Householder Matrix , H x = α z , α = ∥ x ∥ 2 , z H z = 1 \forall x \in C^n,\exists H \text{ is Householder Matrix}, Hx = \alpha z,\alpha = \parallel x \parallel_2,z^Hz = 1 xCn,H is Householder Matrix,Hx=αz,α=∥x2,zHz=1
H = I − 2 u u H , u = x − α z ∥ x − α z ∥ 2 H = I-2uu^H,u = \frac{x-\alpha z}{\parallel x - \alpha z \parallel_2} H=I2uuH,u=xαz2xαz
In particular \text{In particular} In particular
∀ x ∈ C n , ∃ H  is Householder Matrix , H x = α e 1 , α = ∥ x ∥ 2 \forall x \in C^n,\exists H \text{ is Householder Matrix}, Hx = \alpha e_1,\alpha = \parallel x \parallel_2 xCn,H is Householder Matrix,Hx=αe1,α=∥x2
∀ x ∈ R n , ∃ H  is Householder Matrix , H x = α e 1 , α = ± ∥ x ∥ 2 \forall x \in R^n,\exists H \text{ is Householder Matrix}, Hx = \alpha e_1,\alpha = \pm \parallel x \parallel_2 xRn,H is Householder Matrix,Hx=αe1,α=±x2

Givens Matrix

T p q = [ 1 ⋱ 1 c ‾ s ‾ 1 ⋱ 1 − s c 1 ⋱ 1 ] T_{pq} = \begin{bmatrix} 1 &&&&& &&&&\\ &\ddots &&&& &&&& \\ &&1 &&& &&&&\\ &&& \overline c &&&& \overline s &&&\\ &&&& 1 &&&&&&\\ &&&&& \ddots &&&&&& \\ &&&&&& 1 &&&&& \\ &&& -s &&&& c &&& \\ &&&&&&&& 1 &&& \\ &&&&&&&&& \ddots && \\ &&&&&&&&&& 1 &\\ \end{bmatrix} Tpq= 11cs11sc11
y = T p q x (Givens change) y = T_{pq} x \tag{Givens change} y=Tpqx(Givens change)
T p q H T p q = I d e t T p q = 1 \begin{aligned} T_{pq}^HT_{pq} = I\\ det T_{pq} = 1 \end{aligned} TpqHTpq=IdetTpq=1
∀ x = ( ξ 1 , ξ 2 , ⋯   , ξ n ) T , ∃ T p q , y = T p q x , y [ p ] > 0 , y [ q ] = 0 \forall x = (\xi_1,\xi_2,\cdots,\xi_n)^T,\exists T_{pq},y=T_{pq} x,y_{[p]}>0,y_{[q]} = 0 x=(ξ1,ξ2,,ξn)T,Tpq,y=Tpqx,y[p]>0,y[q]=0
c = ξ p ∣ ξ p ∣ 2 + ∣ ξ q ∣ 2 , s = ξ q ∣ ξ p ∣ 2 + ∣ ξ q ∣ 2 c = \frac{\xi_p}{\sqrt{\mid \xi_p \mid^2 + \mid \xi_q \mid^2}},s = \frac{\xi_q}{\sqrt{\mid \xi_p \mid^2 + \mid \xi_q \mid^2}} c=ξp2+ξq2 ξp,s=ξp2+ξq2 ξq
∀ x ∈ C n , ∃ T 12 , T 13 , ⋯   , T 1 n , T 1 n ⋯ T 13 T 12 x = ∥ x ∥ 2 e 1 \forall x \in C^n,\exists T_{12},T_{13},\cdots,T_{1n}, T_{1n}\cdots T_{13}T_{12} x = \parallel x \parallel_2 e_1 xCn,T12,T13,,T1n,T1nT13T12x=∥x2e1

矩阵的QR分解

∀ A ∈ C n × n , A = Q R , Q H Q = I , R is upper triangle matrix \forall A \in C^{n \times n},A = QR,Q^HQ=I,\text{R is upper triangle matrix} ACn×n,A=QR,QHQ=I,R is upper triangle matrix

  • Householder trans \text{Householder trans} Householder trans
    A = ( a 1 , a 2 , ⋯   , a n ) H 1 a 1 = α e 1 H 1 A = ( α 1 ∗ ⋯ ∗ 0 ⋮ B n − 1 0 ) H ~ 2 b 2 = α 2 e ~ 1 H 2 = [ 1 0 T 0 H ~ 2 ] H 2 ( H 1 A ) = ⋯ ⋯ H n − 1 ⋯ H 2 H 1 A = R A = H 1 H 2 ⋯ H n − 1 R = Q R \begin{aligned} &A = (a_1,a_2,\cdots,a_n) \\ &H_1a_1 = \alpha e_1 \\ &H_1 A = \left(\begin{array}{c:ccc} \alpha_1 & * & \cdots & * \\ \hdashline 0 & & \\ \vdots & & \boldsymbol{B}_{n-1} \\ 0 & & \end{array}\right) \\ & \tilde H_2b_2 = \alpha_2 \tilde e_1\\ & H_2 =\begin{bmatrix} 1 &0^T \\ 0 & \tilde H_2\end{bmatrix}\\ & H_2(H_1A) = \cdots\\ &\cdots\\ &H_{n-1}\cdots H_2H_1A = R\\ & A = H_1H_2\cdots H_{n-1}R = QR \\ \end{aligned} A=(a1,a2,,an)H1a1=αe1H1A= α100Bn1 H~2b2=α2e~1H2=[100TH~2]H2(H1A)=Hn1H2H1A=RA=H1H2Hn1R=QR
  • Givens trans \text{Givens trans} Givens trans
    A = ( a 1 , a 2 , ⋯   , a n ) T 1 n ⋯ T 12 a 1 = ∥ a 1 ∥ 2 e 1 ⋯ T n − 1 , n ⋯ T 2 n ⋯ T 23 T 1 n ⋯ T 12 A = R A = T 12 H ⋯ T 1 n H T 23 H ⋯ T 2 n H ⋯ T n − 1 , n H R = Q R \begin{aligned} &A = (a_1,a_2,\cdots,a_n) \\ &T_{1n}\cdots T_{12}a_1 = \parallel a_1 \parallel_2e_1 \\ &\cdots \\ & T_{n-1,n} \cdots T_{2n}\cdots T_{23} T_{1n} \cdots T_{12} A = R \\ &A = T_{12}^H \cdots T_{1n}^H T_{23}^H \cdots T_{2n}^H \cdots T_{n-1,n}^HR = QR \end{aligned} A=(a1,a2,,an)T1nT12a1=∥a12e1Tn1,nT2nT23T1nT12A=RA=T12HT1nHT23HT2nHTn1,nHR=QR
  • Schmidt trans \text{Schmidt trans} Schmidt trans
    A ∈ C n n × n A \in C_{n}^{n \times n} ACnn×n A A A可唯一地分解为
    A = Q R A=QR A=QR
    A = ( a 1 , a 2 , ⋯   , a n ) ⇒ ( p 1 , p 2 , ⋯   , p n )  Schmidt ⇒ ( q 1 , q 2 , ⋯   , q n )  Unit A = ( q 1 , q 2 , ⋯   , q n ) [ ∥ p 1 ∥ 2 λ 21 ∥ p 1 ∥ 2 ⋯ λ n 1 ∥ p 1 ∥ 2 ∥ p 2 ∥ 2 ⋯ λ n 2 ∥ p 2 ∥ 2 ⋱ ⋮ ∥ p n ∥ 2 ] = Q R λ i j = ( a i , p j ) ( p j , p j ) \begin{aligned} A =&(a_1,a_2,\cdots,a_n) \\ \Rightarrow& (p_1,p_2,\cdots,p_n) \text{ Schmidt} \\ \Rightarrow & (q_1,q_2,\cdots,q_n) \text{ Unit} \\ A = &(q_1,q_2,\cdots,q_n) \begin{bmatrix} \parallel p_1 \parallel_2 &\lambda_{21}\parallel p_1 \parallel_2 & \cdots &\lambda_{n1} \parallel p_1 \parallel_2 \\ & \parallel p_2 \parallel_2 &\cdots &\lambda_{n2} \parallel p_2 \parallel_2\\ &&\ddots &\vdots \\ &&& \parallel p_n \parallel_2 \end{bmatrix} = QR\\ &\lambda_{ij} = \frac{(a_i,p_j)}{(p_j,p_j)} \end{aligned} A=A=(a1,a2,,an)(p1,p2,,pn) Schmidt(q1,q2,,qn) Unit(q1,q2,,qn) p12λ21p12p22λn1p12λn2p22pn2 =QRλij=(pj,pj)(ai,pj)
矩阵酉相似于Hessenberg矩阵

A = ( a i j ) n × n ∈ C n × n , a i j = 0 ( i > j + 1 ) (Hessenberg matrix) A = (a_{ij})_{n \times n} \in C^{n \times n},a_{ij} = 0(i>j+1) \tag{Hessenberg matrix} A=(aij)n×nCn×n,aij=0(i>j+1)(Hessenberg matrix)
使用 Householder,Givens \text{Householder,Givens} Householder,Givens变换,将矩阵逐步化简成 Hessenberg \text{Hessenberg} Hessenberg型,例如 H 1 A H 1 = A 1 , ⋯   ,  or  T 12 A T 12 T = A 1 H_1AH_1 = A_1,\cdots, \text{ or } T_{12}AT_{12}^T= A_1 H1AH1=A1,, or T12AT12T=A1
最后得到
Q H A Q = H Q^HAQ = H QHAQ=H

  • A ∈ C n × n , ∃ Q , Q H A Q  is Hessenberg matrix A\in C^{n \times n},\exists Q,Q^HAQ \text{ is Hessenberg matrix} ACn×n,Q,QHAQ is Hessenberg matrix
  • A ∈ R n × n , ∃ Q , Q Q T = I , Q T A Q  is Hessenberg matrix A\in R^{n \times n},\exists Q,QQ^T=I,Q^TAQ \text{ is Hessenberg matrix} ARn×n,Q,QQT=I,QTAQ is Hessenberg matrix
  • A ∈ C n × n , A H = A , ∃ Q , Q H A Q  is tridoginal  A \in C^{n \times n},A^H=A,\exists Q,Q^HAQ \text{ is tridoginal } ACn×n,AH=A,Q,QHAQ is tridoginal 

矩阵的满秩分解

Hermite标准形

如果 A A A经过有限次初等变换变为矩阵 B B B,则 A A A B B B等价,其充要条件是
r a n k A = r a n k B ∃ S ∈ C m m × m , T ∈ C n n × n , S A T = B \begin{aligned} &rank A = rank B \\ &\exists S \in C^{m\times m}_m,T \in C_n^{n\times n},SAT= B \end{aligned} rankA=rankBSCmm×m,TCnn×n,SAT=B
A ∈ C r m × n A \in C_r^{m \times n} ACrm×n,则 A A A可通过初等行变换化为如下条件的矩阵 H H H,即 ∃ S ∈ C m m × m , S A = H \exists S\in C^{m \times m}_m,SA=H SCmm×m,SA=H
H = ( 0 ⋯ 0 1 ∗ ⋯ ∗ 0 ∗ ⋯ 0 ∗ ⋯ ∗ 0 ⋯ 0 0 0 ⋯ 0 1 ∗ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ∗ ⋯ ∗ 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 1 ∗ ⋯ ∗ 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 0 ⋯ 0 } \boldsymbol{H}=\left(\begin{array}{cccccccccccccccccc} 0 & \cdots & 0 & 1 & * & \cdots & * & 0 & * & \cdots & 0 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 1 & * & \cdots & \vdots & \vdots & & \vdots \\ \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & 0 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{array}\right\} H= 0000000000100000000000001000000001000000

  • H H H的前 r r r行中每一行至少含一个非零元素,且第一个非零元素是 1 1 1, 其所在列元素均为 0 0 0(除去自身)

  • H H H中第 i i i行的第一个非零元素 1 1 1位于 j i j_i ji列,则
    j 1 < j 2 < ⋯ j r j_1 < j_2 < \cdots j_r j1<j2<jr

  • H H H的第 j 1 , j 2 , ⋯   , j r j_1,j_2,\cdots,j_r j1,j2,,jr I m I_m Im的前 r r r

这样的矩阵为 Hermite \text{Hermite} Hermite标准形
可通过
S ( A , I m ) = ( S A , S ) = ( H , S ) S(A,I_m) = (SA,S) = (H,S) S(A,Im)=(SA,S)=(H,S)
的方法求出
n n n阶单位矩阵 I n I_n In n n n个列向量 e 1 , e 2 , ⋯   , e n e_1,e_2,\cdots,e_n e1,e2,,en为列构成的 n n n阶方阵
P = ( e i 1 , e i 2 , ⋯   , e i n ) P = (e_{i_1},e_{i_2},\cdots,e_{i_n}) P=(ei1,ei2,,ein)
称为 n n n阶置换矩阵, i 1 , i 2 , ⋯   , i n i_{1},i_{2},\cdots,i_{n} i1,i2,,in n n n的一个全排列

  • P P P是正交矩阵
  • A P AP AP是将 A A A的列按照全排列顺序( H e r m i t e r Hermiter Hermiter标准形每一行第一个非零元素列的顺序)重新排列的矩阵
    A ∈ C r m × n , ∃ S ∈ S m m × m A\in C_r^{m\times n},\exists S\in S_m^{m \times m} ACrm×n,SSmm×m n n n阶置换矩阵 P P P,使得
    S A P = [ I r K O O ] SAP = \begin{bmatrix} I_r &K \\ O &O\end{bmatrix} SAP=[IrOKO]
    如果继续进行初等列变换,可得到
    S A T = [ I r O O O ] SAT = \begin{bmatrix} I_r&O\\ O&O \end{bmatrix} SAT=[IrOOO]
    T T T的方法类似于 S S S的求法

矩阵的满秩分解

A ∈ C r m × n , ∃ F ∈ C r m × r , G ∈ C r r × n , A = F G S A T = [ I r O O O ] F = S − 1 [ 前 r 行 ] , G = T − 1 [ 前 r 列 ] \begin{aligned} A\in C_r^{m \times n},\exists F \in C_r^{m \times r},G \in C_r^{r\times n},\\ A = FG \\ SAT = \begin{bmatrix} I_r &O \\ O &O\end{bmatrix}\\ F = S^{-1}[前r行],G = T^{-1}[前r列] \end{aligned} ACrm×n,FCrm×r,GCrr×n,A=FGSAT=[IrOOO]F=S1[r]G=T1[r]
简便求 F G FG FG的方法如下
S A = H F = A [ 前 j 1 , j 2 , ⋯   , j r 列 ] G = H [ 前 r 行 ] \begin{aligned} SA = H \\ F = A[前j_1,j_2,\cdots,j_r列]\\ G = H[前r行] \end{aligned} SA=HF=A[j1,j2,,jr]G=H[r]

矩阵的奇异值分解

A , B ∈ C m × n A,B \in C^{m \times n} A,BCm×n,若存在 m m m阶酉矩阵 U U U n n n阶酉矩阵 V V V,使得 U H A V = B U^HAV=B UHAV=B,则称 A A A B B B酉等价。
A ∈ C r m × n A \in C_r^{m \times n} ACrm×n, A H A A^HA AHA的特征值为
λ 1 ≥ λ 2 ≥ ⋯ ≥ λ r > λ r + 1 = ⋯ = 0 \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r >\lambda_{r+1} = \cdots = 0 λ1λ2λr>λr+1==0
则称 σ i = λ i \sigma_i=\sqrt{\lambda_i} σi=λi A A A的奇异值
酉等价矩阵有相同的奇异值
A ∈ C r m × n A\in C_r^{m \times n} ACrm×n,则存在 m m m阶酉矩阵 U U U n n n阶酉矩阵 V V V,使
U H A V = [ Σ O O O ] , Σ = d i a g ( σ 1 , σ 2 , ⋯   , σ r ) U^HAV = \begin{bmatrix} \Sigma &O\\ O&O \end{bmatrix},\Sigma = diag(\sigma_1,\sigma_2,\cdots,\sigma_r) UHAV=[ΣOOO],Σ=diag(σ1,σ2,,σr)
A = U [ Σ O O O ] V H A = U \begin{bmatrix} \Sigma & O \\ O&O \end{bmatrix} V^H A=U[ΣOOO]VH
称为 A A A的奇异值分解
[ V H A H A V = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) V = ( V 1 , V 2 ) ( V 1 ∈ C n × r ) U 1 = A V 1 Σ − 1 U = ( U 1 , U 2 ) , U H U = I ] \begin{bmatrix} V^HA^HAV = diag(\lambda_1,\lambda_2,\cdots,\lambda_n)\\ V = (V_1,V_2) (V_1 \in C^{n \times r}) \\ U_1 = AV_1\Sigma^{-1} \\ U=(U_1,U_2),U^HU=I\\ \end{bmatrix} VHAHAV=diag(λ1,λ2,,λn)V=(V1,V2)(V1Cn×r)U1=AV1Σ1U=(U1,U2),UHU=I
A ∈ C r m × n , b ∈ C m A \in C_r^{m\times n},b \in C^m ACrm×n,bCm,对 A A A进行奇异分解,
x ( 0 ) = V [ Σ − 1 O O O ] U H b x^{(0)} = V \begin{bmatrix} \Sigma^{-1} &O \\ O& O \end{bmatrix} U^Hb x(0)=V[Σ1OOO]UHb
是矛盾方程组 A x = b Ax = b Ax=b的最小二乘解,如果最小二乘解不唯一,则 x ( 0 ) x^{(0)} x(0)是其中具有最小 2 2 2范数的向量,称其为极小范数最小二乘解

特征值的估计与表示

特征值的包含区域

Gerschgorin定理

A = ( a i j ) n × n A = (a_{ij})_{n \times n} A=(aij)n×n,记
R i = ∑ j = 1 , j ≠ i n ∣ a i j ∣ R_i = \sum_{j=1,j\neq i}^n \mid a_{ij} \mid Ri=j=1,j=inaij
称复平面上的圆域
G i = { z ∣ ∣ z − a i i ∣ ≤ R i , z ∈ C } ( i = 1 , 2 , ⋯   , n ) G_i = \{z \mid \mid z - a_{ii} \mid \leq R_i,z\in C \} (i=1,2,\cdots,n) Gi={z∣∣zaii∣≤Ri,zC}(i=1,2,,n)
为矩阵 A A A的第 i i i Gerschgorin \text{Gerschgorin} Gerschgorin圆,称 R i R_i Ri为盖尔圆 G i G_i Gi的半径
λ 1 , λ 2 , ⋯   , λ n ∈ ⋃ i = 1 n G i (Gerschgorin1) \lambda_1,\lambda_2,\cdots,\lambda_n \in \bigcup_{i=1}^n G_i \tag{Gerschgorin1} λ1,λ2,,λni=1nGi(Gerschgorin1)
A A A的特征值与 A T A^T AT的特征值相同, A T A^T AT的盖尔圆叫做 A A A的列盖尔圆

  • Gerschgorin2 \text{Gerschgorin2} Gerschgorin2:若矩阵 A A A的某一连通部分由 A A A k k k个盖尔圆构成,则其中有且仅有 A A A k k k个特征值

  • A A A按行(列)严格对角占优,则 d e t A ≠ 0 det A \neq 0 detA=0

  • 实矩阵的复特征值成对共轭出现,如果其盖尔圆各自独立且均关于实轴对称,则特征值均为实数

特征值的隔离

选取正数,令 d i d_i di
D = d i a g ( d 1 , d 2 , ⋯   , d n ) D = diag(d_1,d_2,\cdots,d_n) D=diag(d1,d2,,dn)
B = D A D − 1 = ( a i j d i d j ) n × n B = DAD^{-1} = (a_{ij}\frac{d_i}{d_j})_{n \times n} B=DAD1=(aijdjdi)n×n
A A A B B B有相同的特征值,通过设某一个 d i > 1  or  d i < 1 d_i>1 \text{ or }d_i<1 di>1 or di<1,其他 d d d设为 1 1 1,可放大或缩小 G i G_i Gi,同时缩小放大其它盖尔圆。

D D D中不为 1 1 1的位置为 d i d_i di D A D − 1 = B DAD^{-1}=B DAD1=B B B B等于对 A A A的第 i i i行元素乘以 d i d_i di,第 i i i列元素乘以 1 d i \cfrac 1{d_i} di1,不对 a i i a_{ii} aii操作。

Rayleign商

A A A n n n阶实对称矩阵, x ∈ R n x \in R^n xRn,
R ( x ) = x T A x x T x = ( A x , x ) ( x , x ) R(x) = \frac{x^TAx}{ x^Tx} = \frac{(Ax,x)}{(x,x)} R(x)=xTxxTAx=(x,x)(Ax,x)
A A A Rayleign \text{Rayleign} Rayleign

  • R ( λ x ) = R ( x ) R(\lambda x) = R(x) R(λx)=R(x)
  • λ 1 = max ⁡ x ≠ 0 R ( x ) \lambda_1 = \max_{x\neq 0} R(x) λ1=maxx=0R(x)
  • λ n = min ⁡ x ≠ 0 R ( x ) \lambda_n = \min_{x\neq 0}R(x) λn=minx=0R(x)
  • R ( x ) = x T A x x T x = y T A y , ∥ y ∥ 2 = 1 R(x) = \frac{x^TAx}{x^Tx} = y^TAy,\parallel y \parallel_2=1 R(x)=xTxxTAx=yTAy,y2=1
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的卤蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值