交通流预测现已用过的模型

1. T-GCN:用于流量预测的时间图卷积网络

2. A3T-GCN: 用于流量预测的注意力时间图卷积网络

3. AST-GCN:用于流量预测的属性增强时空图卷积网络

4. KST-GCN:用于流量预测的知识驱动的时空图卷积网络

5. 曲率图神经网络

6.STGC-GNNs:基于 GNN 的交通预测框架,具有时空格兰杰因果关系图

7. 不变判别表示的无增强图对比学习

8. 用于动态图的高阶拓扑增强图卷积网络 (HoT-GCN)

9. 减轻邻域偏差:用结构等效正样本增强图自我监督学习

10. LSTTN:用于交通流量预测的基于长短期 transformer 的时空神经网络

11. CAT:用于修剪异性图的因果图注意力网络

  • DCRNN:利用扩散卷积RNN建模时空依赖关系
  • STGCN:结合图卷积网络和1D卷积网络
  • Graph WaveNet:利用自适应邻接矩阵和空洞卷积
  • GMAN:利用多头注意力机制捕捉长期依赖

这些模型在METR-LA、PeMS-BAY等公开数据集上取得了不错的效果。

(1)DCRNN,扩散卷积神经网络和门控循环单元的组合;

(2)STGCN ,一个堆叠一维门控卷积块和图卷积块的时空网络;
(3)Graph WaveNet,一个利用自适应依赖矩阵并融合一维因果卷积和图卷积来捕获时空依赖性的时空网络;

(4)GMAN,一个多头注意力网络,它捕获不同节点之间的空间关系和不同时间步长之间的时间关系:

(5)MTGNN,一种能够通过图学习层学习多尺度时空特征的模型,无需事先了解图结构;(6)DDSTGCN ,一种双动态 STGCN,利用边缘特征将交通流图转换为超图;

(7)STID,一种基于简单多层感知器对信息进行编码并通过回归层进行预测的模型;

(8) DSTET,一种通过解耦空间和时间嵌入来增强时空特征特征的变压器网络;
(9)DAGN,一种域对抗图神经网络,可捕获节点对相邻关系,以实现时空信息的动态聚合。

1. T-GCN:用于流量预测的时间图卷积网络

准确、实时的交通预测在智能交通系统中发挥着重要作用,对城市交通规划、交通管理和交通控制具有重要意义。然而,由于城市路网拓扑结构的约束和随时间动态变化的规律,即空间依赖性和时间依赖通预测一直被认为是一个开放的科学问题。为了同时捕捉空间和时间依赖性,我们提出了一种新的基于神经网络的交通预测方法,即时间图卷积网络 (T-GCN) 模型,它与图卷积网络 (GCN) 和门控循环单元 (GRU) 相结合。具体来说,GCN 用于学习复杂的拓扑结构以捕获空间依赖性,而门控循环单元用于学习交通数据的动态变化以捕获时间依赖性。然后,采用 T-GCN 模型进行基于城市路网的交通预测;实验表明,我们的 T-GCN 模型可以从交通数据中获得时空相关性,并且预测结果优于真实世界交通数据集上最先进的基线。

2. A3T-GCN: 用于流量预测的注意力时间图卷积网络

精准的实时交通预测是反对智能交通系统实施的核心技术问题。然而,考虑到交通流之间复杂的空间和时间依赖关系,这仍然具有挑战性。在空间维度上,由于道路网络的连通性,相连道路之间的交通流密切相关。从时间因素来看,虽然相邻时间点之间总体上存在趋势,但由于交通流量也受到外部因素的影响,远距离过去点的重要性不一定小于近期过去点的重要性。本研究提出了一种注意力时间图卷积网络 (A3T-GCN) 流量预测方法,以同时捕获全局时间动态和空间相关性。A3T-GCN 模型利用门控循环单元学习时间序列中的短时趋势,并通过图卷积网络基于道路网络的拓扑学习空间依赖性。此外,引入注意力机制来调整不同时间点的重要性并组装全局时间信息,以提高预测准确性。真实世界数据集中的实验结果证明了所提出的 A3T-GCN 的有效性和稳健性。

3. AST-GCN:用于流量预测的属性增强时空图卷积网络

交通预测是智能交通领域一项基础性且具有挑战性的任务。准确的预测不仅取决于历史交通流量信息,还需要考虑多种外部因素的影响,例如天气状况和周围的 POI 分布。近年来,融合图卷积网络和递归神经网络的时空模型成为交通预测研究热点,并取得了重大进展。然而,很少有作品融合了外部因素。因此,基于引入外部因素可以提高预测流量的时空准确性和提高可解释性的假设,我们提出了一种属性增强的时空图卷积网络 (AST-GCN)。我们将外部因素建模为动态属性和静态属性,并设计一个属性增强单元来编码这些因素并将其集成到时空图卷积模型中。在真实数据集上的实验表明,与传统的交通预测方法相比,在交通速度预测任务中考虑外部信息的有效性。此外,在不同的属性增强方案和预测范围设置下,AST-GCN 的预测精度高于基线。

4. KST-GCN:用于流量预测的知识驱动的时空图卷积网络

在考虑交通的空间和时间特征时,捕获各种外部因素对出行的影响是实现准确交通预测的重要步骤。然而,现有的研究很少考虑外部因素或忽视外部因素之间的复杂相关性对交通的影响。直观地说,知识图谱可以自然地描述这些相关性。由于知识图谱和流量网络本质上是异构网络,因此在这两个网络中集成信息具有挑战性。在此背景下,本研究提出了一种基于时空图卷积网络的知识表示驱动的交通预测方法。我们首先构建一个用于流量预测的知识图谱,并通过一个名为 KR-EAR 的知识表示学习方法推导出知识表示。然后,我们提出了知识融合单元 (KF-Cell),将知识和交通特征相结合,作为时空图卷积骨干网络的输入。在真实数据集上的实验结果表明,我们的策略增强了 backbone 在各种预测范围内的预测性能。消融和扰动分析进一步验证了所提方法的有效性和稳健性。据我们所知,这是第一项构建和利用知识图谱来促进流量预测的研究;它还为整合外部信息和时空信息进行交通预测提供了一个有前途的方向。

5. 曲率图神经网络

图神经网络 (GNN) 在许多基于图的任务中取得了巨大成功。许多工作致力于赋予 GNN 自适应定位能力,从而能够通过节点特定的机制来测量相邻节点对目标节点的重要性。但是,当前特定于节点的机制在区分节点在拓扑结构中的重要性方面存在不足。我们认为,相邻节点的结构重要性与它们在聚合中的重要性密切相关。在本文中,我们引入了离散图曲率(Ricci 曲率)来量化成对节点的结构连接的强度。我们提出了一种曲率图神经网络 (CGNN),它通过利用图曲率的结构特性有效地提高了 GNN 的自适应定位能力。为了提高曲率在各种数据集上的适应性,我们通过必要的负曲率处理模块和曲率归一化模块将曲率显式转换为相邻节点的权重。然后,我们对各种合成和真实世界的数据集进行了大量实验。在合成数据集上的实验结果表明,CGNN 有效地利用了拓扑结构信息,并且性能得到了显著提高。CGNN 在 5 个密集节点分类基准数据集上优于基线。本研究加深了对如何利用高级拓扑信息并从图曲率的角度分配相邻节点的重要性的理解,并鼓励弥合图论和神经网络之间的差距。
 

6.STGC-GNNs:基于 GNN 的交通预测框架,具有时空格兰杰因果关系图

图神经网络 (GNN) 在许多基于图的任务中取得了巨大成功。许多工作致力于赋予 GNN 自适应定位能力,从而能够通过节点特定的机制来测量相邻节点对目标节点的重要性。但是,当前特定于节点的机制在区分节点在拓扑结构中的重要性方面存在不足。我们认为,相邻节点的结构重要性与它们在聚合中的重要性密切相关。在本文中,我们引入了离散图曲率(Ricci 曲率)来量化成对节点的结构连接的强度。我们提出了一种曲率图神经网络 (CGNN),它通过利用图曲率的结构特性有效地提高了 GNN 的自适应定位能力。为了提高曲率在各种数据集上的适应性,我们通过必要的负曲率处理模块和曲率归一化模块将曲率显式转换为相邻节点的权重。然后,我们对各种合成和真实世界的数据集进行了大量实验。在合成数据集上的实验结果表明,CGNN 有效地利用了拓扑结构信息,并且性能得到了显著提高。CGNN 在 5 个密集节点分类基准数据集上优于基线。本研究加深了对如何利用高级拓扑信息并从图曲率的角度分配相邻节点的重要性的理解,并鼓励弥合图论和神经网络之间的差距。

7. 不变判别表示的无增强图对比学习

对于交通预测任务,对道路网络的空间依赖性进行建模非常重要。空间依赖的本质是准确描述交通信息传输如何受到路网中其他节点的影响,基于 GNN 的交通预测模型作为交通预测的基准,通过消息传递机制传输交通信息,成为对空间依赖性进行建模能力的最常用方法。然而,交通信息的传递是长期交通预测中一个全局性的、动态的过程,不能用局部和静态的空间依赖性来描述。在本文中,我们提出了一种时空格兰杰因果关系 (STGC) 来模拟全局和动态空间依赖性,它可以捕捉动态交通流底层节点之间的稳定因果关系。STGC 可以通过我们提出的时空 Granger 因果关系检验方法来检测。我们选择 T-GCN、STGCN 和 Graph Wavenet 作为 bakbones,在 3 个主干模型上的实验结果表明,使用 STGC 对空间依赖性进行建模,在 45 min 和 1 h 长期预测方面比原始模型有更好的结果。

8. 用于动态图的高阶拓扑增强图卷积网络 (HoT-GCN)

了解动态图的进化机制至关重要,因为动态是真实世界网络的基本特征。动态图建模的挑战如下:(1) 现实世界的动态通常以群体效应为特征,这基本上来自涉及实体组的高阶交互。因此,图边所揭示的成对交互不足以描述复杂系统。(2) 从真实系统获取的图数据往往是有噪声的,杂边会干扰模型的稳定性和效率。为了解决这些问题,我们提出了一种用于动态图建模的高阶拓扑增强图卷积网络。其背后的基本原理是,图中的对称子结构(称为最大集团)一方面可以反映高阶交互的群影响,另一方面不会轻易受到虚假链接的干扰。然后,我们利用两个独立的分支来模拟两种效应的不同影响机制。可学习参数用于在此过程中调整两种效果的相对重要性。我们在真实世界的数据集上进行链接预测,包括一个社交网络和两个引文网络。结果表明,高阶增强方法的平均改进率比数据集中的相应主干高 68%、15% 和 280%。消融研究和扰动分析验证了所提方法的有效性和稳健性。我们的研究表明,高阶结构为研究图的动力学提供了新的视角,并强调了未来采用高阶拓扑的必要性。

9. 减轻邻域偏差:用结构等效正样本增强图自我监督学习

近年来,使用自我监督学习框架来学习图的一般特征被认为是图表示学习的一种很有前途的范式。图神经网络的自监督学习策略的核心在于构建合适的正样本选择策略。然而,现有的 GNN 通常会聚合来自相邻节点的信息以更新节点表示,从而导致过度依赖相邻的阳性样本,即嗜同性样本;而忽略长程正样本,即在图上相距很远但在结构上等效样本的正样本,我们称之为“邻域偏差”的问题。这种邻域偏差会降低 GNN 的泛化性能。在本文中,我们认为 GNN 的泛化特性应该通过组合同质样本和结构等效样本来确定,我们称之为 “GC 组合假说”。因此,我们提出了一种拓扑信号驱动的自我监督方法。它使用拓扑信息引导的结构等价抽样策略。首先,我们使用持久同源性提取多尺度拓扑特征。然后,我们根据节点对的拓扑特征计算节点对的结构等效性。特别是,我们设计了一个拓扑损失函数,在表示空间中引入具有高结构等效性的非相邻节点对,以减轻邻居偏差。最后,我们使用联合训练机制来调整结构等价对模型的影响,以拟合具有不同特征的数据集。我们在 7 个图数据集上对节点分类任务进行了实验。 结果表明,采用拓扑信号增强策略可以有效提高模型性能。

10. LSTTN:用于交通流量预测的基于长短期 transformer 的时空神经网络

准确的交通预测是智能交通系统中的一个基本问题,通过时空图神经网络 (STGNN) 学习具有关键信息的远程交通表示是当前交通流预测模型的基本假设。然而,由于结构限制,现有的 STGNN 只能利用短距离交通流数据;因此,模型无法充分学习交通流中的复杂趋势和周期性特征。此外,从长历史流量序列中提取关键时间信息并获得紧凑的表示也具有挑战性。针对上述问题,我们提出了一种新的 LSTTN(Long-Short Term Transformer-based Network,长短期变换器网络)框架,综合考虑了历史交通流中的长期和短期特征。首先,我们采用掩码子序列 Transformer 以预训练方式从一小部分未掩码的子序列及其时间上下文中推断出掩码子序列的内容,迫使模型有效地从长历史序列中学习压缩和上下文子序列的时间表示。然后,基于学习到的表示,利用堆叠的一维膨胀卷积层提取长期趋势,通过动态图卷积层提取周期性特征。针对时间步长级预测的难点,LSTTN 采用短期趋势提取器来学习细粒度的短期时间特征。最后,LSTTN 融合长期趋势、周期特征和短期特征得到预测结果。在四个真实数据集上的实验表明,在提前 60 分钟的长期预测中,LSTTN 模型实现了 5.63% 的最小改进和最大 16% 的改进。比基线模型高 78%。

11. CAT:用于修剪异性图的因果图注意力网络

图注意力网络 (GAT) 中采用的局部注意力引导消息传递机制 (LAMP) 可以自适应地学习相邻节点的重要性,并更好地进行局部聚合,从而表现出更强的判别能力。然而,现有的 GAT 在异亲性图中遭受显着的鉴别能力下降。原因是高比例的相异邻居会削弱中心节点的自注意力,导致中心节点偏离其在表示空间中的相似节点。这种由相邻节点引起的影响在本文中称为分散效应 (DE)。为了估计和削弱由相邻节点诱导的 DE,我们提出了一个用于修剪异性图 (CAT) 的因果图注意力网络。为了估计 DE,由于 DE 是通过两条路径产生的,因此我们采用总效应作为估计 DE 的指标;为了削弱 DE,我们确定 DE 最高的邻居(我们称之为 Distraction Neighbors)并将其删除。我们在拟议的 CAT 框架内采用三个具有代表性的 GAT 作为基本模型,并在三个不同大小的 7 个异亲数据集上进行了实验。对比实验表明,CAT 可以提高所有基础 GAT 模型的节点分类精度。消融实验和可视化进一步验证了 CATs 增强的鉴别能力。此外,CAT 是一个即插即用框架,可以引入任何 LAMP 驱动的 GAT,因为它在注意力学习阶段学习修剪后的图,而不是修改模型架构或全局搜索新的邻居。

### LSTTN算法的实现及其在信息技术领域中的应用 关于LSTTN (Long Short-Term Temporal Network),这是一种用于处理时间序列数据的技术,在许多方面扩展了传统的长短时记忆网络(LSTM)[^1]。然而,具体提及LSTTN的信息较少见于公开资料中。 #### 实现细节 通常情况下,LSTTN旨在改进标准RNN模型对于长时间依赖性的捕捉能力不足的问题。通过引入额外的时间感知机制来增强对不同时间段之间关系的理解。这种架构可能涉及更复杂的门控结构或者特殊的激活函数设计以更好地模拟真实世界事件的发生规律[^2]。 ```python import torch.nn as nn class LSTTNCell(nn.Module): def __init__(self, input_size, hidden_size): super().__init__() self.hidden_size = hidden_size # Define layers specific to LSTTN here def forward(self, x, h_c=None): if h_c is None: batch_size = x.size(0) h_t = torch.zeros(batch_size, self.hidden_size).to(x.device) c_t = torch.zeros(batch_size, self.hidden_size).to(x.device) else: h_t, c_t = h_c # Implement the temporal dynamics within this function return output, (h_t_next, c_t_next) ``` #### 应用场景 尽管具体的文献描述不多,但从理论上讲,任何需要建模复杂时空模式的任务都可以受益于这类高级循环神经元的设计思路: - **金融预测**:利用历史交易记录来进行股票价格走势预估; - **自然语言处理**:改善机器翻译系统的流畅度和平滑性; - **医疗健康监测**:分析患者生理指标随时间变化的趋势并预警潜在风险因素; 值得注意的是,虽然上述例子并未直接提到LSTTN的应用实例,但是考虑到该类模型的特点,这些方向都是合理的应用场景假设[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梖梖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值