import pandas as pd
import numpy as np
from scipy.interpolate import lagrange
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# 剔除异常值,拉格朗日法补全数据,构造指数等指标
data = pd.read_excel(r'',sheet_name = 0)#读取文件
data_full = data #仅作模板用
shape_inf = np.shape(data,axis = 0)#data长度
for i in range(40): #个体数量循环
df_a=pd.DataFrame(np.zeros((16,1)),columns = ['待插值']) #空容器设定
df_a = data.iloc[] # 装容
df = df_a.dropna() #q清除缺失值
LagInsValue = lagrange(df.index, df.values) #训练插值的数据参考,选取越多,插值越准,计算代价也越大
for j in range(16):
data_full LagInsValue(i)#结果写入
data_full #预览
插值框架未完成
最新推荐文章于 2024-04-08 14:57:45 发布