插值框架未完成

import pandas as pd
import numpy as np
from scipy.interpolate import lagrange
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

# 剔除异常值,拉格朗日法补全数据,构造指数等指标
data = pd.read_excel(r'',sheet_name = 0)#读取文件
data_full = data #仅作模板用
shape_inf = np.shape(data,axis = 0)#data长度 
for i in range(40): #个体数量循环
    df_a=pd.DataFrame(np.zeros((16,1)),columns = ['待插值']) #空容器设定
    df_a = data.iloc[]      # 装容
    df = df_a.dropna()      #q清除缺失值
    LagInsValue = lagrange(df.index, df.values) #训练插值的数据参考,选取越多,插值越准,计算代价也越大
    for j in range(16):
        data_full   LagInsValue(i)#结果写入
        
data_full #预览
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值