Frechet分布是一种连续概率分布,它是极值统计中的一个重要模型,尤其在分析极端事件(如洪水、地震、金融市场中的极端波动)的最大值极限分布时扮演关键角色。Frechet分布属于极值分布的三种基本类型(I型、II型、III型)中的II型分布。
Frechet分布的概率密度函数(PDF)对于变量X和参数λ>0(形状参数)、α>0(尺度参数)、θ(位置参数)可表示为:
[ f ( x ; λ , α , θ ) = { 0 x ≤ θ ; λ α ( x − θ α ) − λ − 1 e − ( x − θ α ) − λ x > θ ] [ f(x; \lambda, \alpha, \theta) = \begin{cases} 0 & x \leq \theta \ ; \frac{\lambda}{\alpha} \left( \frac{x-\theta}{\alpha} \right)^{-\lambda - 1} e^{-\left(\frac{x-\theta}{\alpha}\right)^{-\lambda}} & x > \theta \end{cases} ] [f(x;λ,α,θ)={0x≤θ ;αλ(αx−θ)−λ−1e−(αx−θ)−λx>θ]
累积分布函数(CDF)则为:
[ F ( x ; λ , α , θ ) = { 0 x ≤ θ ; e − ( θ − x α ) − λ x > θ ] [ F(x; \lambda, \alpha, \theta) = \begin{cases} 0 & x \leq \theta \ ; e^{-\left(\frac{\theta-x}{\alpha}\right)^{-\lambda}} & x > \theta \end{cases} ] [F(x;λ,α,θ)={0x≤θ ;e−(αθ−x)−λx>θ]
当位置参数θ=0时,我们得到的是简化版的标准Frechet分布,此时分布仅依赖于形状参数λ和尺度参数α。
Frechet分布的一个显著特征是其尾部比正态分布更厚,即存在较重的尾部,这意味着相比于正态分布,极端值出现的可能性更大。在实际应用中,通过分析数据集中的极端值,可以判断是否符合Frechet分布,并据此对未来的极端事件做出预测或风险评估。