正余弦优化算法(SCA)

正余弦优化算法(SineCosineAlgorithm, SCA)是由SeyedaliMirjalili在2016年提出的,它通过数学上的正弦和余弦模型引导随机解进行波动,以寻找全局最优解。该算法能有效避免局部最优,适用于多变量优化问题,具有广泛的应用前景。
摘要由CSDN通过智能技术生成

正余弦优化算法 (Sine Cosine Algorithm,SCA) 是Seyedali Mirjalili等于2016年提出的一种新型智能优化算法,在算法中会生成多个初始随机候选解,并使它们基于正弦和余弦的数学模型向外波动或向最优解的方向波动,利用多个随机变量和自适应变量来计算当前解所在位置,从而可以搜索空间中的不同区域,有效地避免局部最优,收敛于全局最优。

部分代码如图

代码获取

https://mianbaoduo.com/o/bread/YpeXkpds

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值