智能优化算法——正余弦优化算法(Matlab代码实现)

本文详细介绍了正余弦优化算法(SCA),一种用于解决优化问题的新技术,其利用正弦和余弦函数进行搜索空间的探索和开发。文章涵盖算法的数学模型、步骤,并提供了Matlab代码实现及运行结果,展示了SCA如何在不同维度上更新候选解以找到全局最优解。
摘要由CSDN通过智能技术生成

目录

0 概述

1 数学模型

2 算法步骤

3 Matlab全部代码

3.1 代码

3.2 结果 


0 概述

正弦余弦算法(SCA)是一种解决优化问题的新优化技术。SCA创建了多个初始随机候选解决方案,并要求它们使用基于正弦和余弦函数的数学模型向外或向最佳解决方案波动。几个随机变量和自适应变量也被整合到这个算法中,以强调在优化的不同阶段对搜索空间的探索和利用。

运行结果:

1 数学模型

正余弦优化算法是一种随机优化算法,具有高度的灵活性,原理简单,易于实现,可以方便地应用于不同领域的优化问题。正余弦优化算法的寻优过程可分为两个阶段,在探索阶段,优化算法通过结合某随机解在所有随机解中快速寻找搜索空间中的可行区域; 到了开发阶段,随机解会逐渐发生变化,且随机解的变化速度会低于探索阶段的速度。在正弦余弦算法中,首先候选解会被随机初始化,然后会根据正弦或者余弦函数并结合随机因子来更新当前解在每一维度上的值。其具体更新方程为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值