目录
0 概述
正弦余弦算法(SCA)是一种解决优化问题的新优化技术。SCA创建了多个初始随机候选解决方案,并要求它们使用基于正弦和余弦函数的数学模型向外或向最佳解决方案波动。几个随机变量和自适应变量也被整合到这个算法中,以强调在优化的不同阶段对搜索空间的探索和利用。
运行结果:
1 数学模型
正余弦优化算法是一种随机优化算法,具有高度的灵活性,原理简单,易于实现,可以方便地应用于不同领域的优化问题。正余弦优化算法的寻优过程可分为两个阶段,在探索阶段,优化算法通过结合某随机解在所有随机解中快速寻找搜索空间中的可行区域; 到了开发阶段,随机解会逐渐发生变化,且随机解的变化速度会低于探索阶段的速度。在正弦余弦算法中,首先候选解会被随机初始化,然后会根据正弦或者余弦函数并结合随机因子来更新当前解在每一维度上的值。其具体更新方程为: