解法1(分块打表)
将打表结果分块,解决内存不足的问题,是一个很实用的技巧。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e6+5;
double ans[N];
void init(){
double t=0.0;
ans[0]=0.0;
for(int i=1;i<=N*100;i++){
t+=1.0/i;
if(i%100==0)ans[i/100]=t;
}
}
int main(){
init();
int t,n,kas=0;
scanf("%d",&t);
while(t--){
double sum=0.0;
scanf("%d",&n);
int k1=n/100,k2=n%100;
sum=ans[k1];
for(int i=0;i<k2;i++)sum+=1.0/(n-i);
printf("Case %d: %.10lf\n",++kas,sum);
}
}
解法2
当n>1e6,时就可以用公式
l
n
(
n
)
+
r
+
1.0
/
(
2
∗
n
)
ln(n)+r+1.0/(2*n)
ln(n)+r+1.0/(2∗n)进行近似计算了
(r为欧拉常数,在c++里log默认底数为e)
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const double r=0.57721566490153286060651209;//欧拉常数
double a[10000];
int main(){
for (int i=1;i<10000;i++)a[i]=a[i-1]+1.0/i;
int t,n,kase=0;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
if (n<10000)printf("Case %d: %.10lf\n",++kase,a[n]);
else{
double ans=log(n)+r+1.0/(2*n);
printf("Case %d: %.10lf\n",++kase,ans);
}
}
}