机器学习算法进阶——回归算法

手写理论

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

线性回归理论

线性回归

y = ax+b在这里插入图片描述

y i = θ T x ( i ) + ε ( i ) y_i = \theta^Tx^{(i)}+\varepsilon^{(i)} yi=θTx(i)+ε(i)

误差 ε ( i ) ( 1 ≤ i ≤ m ) \varepsilon^{(i)}(1\leq i \leq m) ε(i)(1im)是独立同分布的,服从均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2的高斯(正态)分布。

最小二乘法: m i n ∑ i = 1 n ε ′ ε min \sum_{i=1}^n \varepsilon' \varepsilon mini=1nεε

理论基础:最小二乘、正则化、过拟合

θ \theta θ的解析式的求解过程:
在这里插入图片描述
最小二乘意义下的参数最优解:
在这里插入图片描述加入 λ \lambda λ扰动后:
在这里插入图片描述线性回归的复杂程度惩罚因子:
在这里插入图片描述PS:L1正则使得变量的系数都尽可能的小,趋近于0,可用来做特征选择。

正则项与防止过拟合:( λ > 0 , ρ ϵ [ 0 , 1 ] \lambda>0,\rho\epsilon[0,1] λ>0,ρϵ[0,1])
在这里插入图片描述机器学习与数据使用:
在这里插入图片描述PS:在训练数据上,每给定一个 λ \lambda λ,都会得到相应的 θ \theta θ;在验证数据上(为了选定超参 λ \lambda λ),用在前面训练数据上得到的 ( θ , λ ) (\theta,\lambda) (θ,λ)组合,得到每组的误差值,从而可以得到最优超参的应用于测试数据。

Moore-Penrose广义逆矩阵(伪逆)
在这里插入图片描述SVD计算矩阵的广义逆:
在这里插入图片描述PS:计算出矩阵A的伪逆,乘以 y 就可以得到 θ \theta θ

梯度下降算法

目标函数: J ( θ ) = 1 2 ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta)=\frac{1}{2}\sum_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})^2 J(θ)=21i=1m(hθ(x(i))y(i))2
在这里插入图片描述梯度方向:
在这里插入图片描述批量梯度下降算法(BGD):
在这里插入图片描述

在这里插入图片描述

批量梯度下降图示

随机梯度下降(SGD):
在这里插入图片描述
折中:mini-batch (SGD)最常用的
在这里插入图片描述
【衡量指标】
在这里插入图片描述

局部加权回归

在这里插入图片描述

∑ i ω i ( y i − θ T x i ) \sum_i\omega^{i}(y^i-\theta^Tx^i) iωi(yiθTxi)

权值的设置:
在这里插入图片描述

Logistic回归、Soft-max回归

在这里插入图片描述

Logistic回归

在这里插入图片描述Logistic 参数估计:
在这里插入图片描述
对数似然函数:
在这里插入图片描述在这里插入图片描述参数的迭代:在这里插入图片描述PS:线性回归是假定模型服从高斯分布,利用最大似然估计(MLE)推导的,Logistic回归是假定模型服从二项分布,利用最大似然估计推导的。

同样,利用伯努利分布、泊松分布也能得到相应的模型,这类模型称为广义的线性模型(GLM)。

对数线性模型:+Logictic回归的损失: y i ϵ ( − 1 , 1 ) y^i \epsilon{(-1,1)} yiϵ(1,1)
在这里插入图片描述NLL:负对数似然
Logistic回归:沿似然函数正梯度上升;维度提升

多分类:Softmax回归

在这里插入图片描述

回归实践

AUC 分类器指标

在这里插入图片描述
Receiver Operating Characteristic(AUC)
Area Under Curve
在这里插入图片描述
以0.1的错误率换取0.8的正确率,ROC曲线下的面积在[0.5,1]之间,[0,0.5]之间模型没有意义,0.5说明模型是随机做的,1说明模型分类正确率100%。ROC曲线衡量了分类器的分类性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值