一、电势
设共起点、中点的两段曲线 L 1 、 L 2 L_1、L_2 L1、L2,由它们围成了闭合曲线 L L L。根据环路定理: ∮ L E ∙ d l = 0 ⇒ ∫ L 1 E ∙ d l = ∫ L 2 E ∙ d l \oint_L{\bm E\bullet{\rm d}\bm l}=0\Rightarrow\int_{L_1}{\bm E\bullet{\rm d}\bm l}=\int_{L_2}{\bm E\bullet{\rm d}\bm l} ∮LE∙dl=0⇒∫L1E∙dl=∫L2E∙dl也就是说两点间场强的路径积分与路径无关。定义两点的电势差为 U A B = ∫ A B E ∙ d l U_{AB}=\int_A^B{\bm E\bullet{\rm d}\bm l} UAB=∫ABE∙dl这里没有写路径是因为路径积分与路径无关。
这里不难发现与重力势能、引力势能的相似之处。重力和引力也是做功与路径无关的力,所以会有势能的概念。库仑力具有这样的性质,也就有了势能的概念。
为了确定势能的大小,需要定一个零势点,一般选定无穷远点作为零势点。 U ( P ) = ∫ P ∞ E ∙ d l ⇒ U A B = U ( A ) − U ( B ) U(P)=\int_P^\infty{\bm E\bullet{\rm d}\bm l}\Rightarrow U_{AB}=U(A)-U(B)