略谈狄利克雷卷积和数论函数基础

1.狄利克雷卷积定义:

狄利克雷卷积是形如 f ( x ) = g ( x ) ∗ h ( x ) f(x)=g(x)*h(x) f(x)=g(x)h(x)的式子(*是狄利克雷卷积符号,我也不知道手写叉乘行不行 ),它表示的含义为 f ( x ) = ∑ d ∣ x g ( d ) × h ( x / d ) f(x)=\sum_{d|x} g(d)\times h(x/d) f(x)=dxg(d)×h(x/d).

2.性质:

狄利克雷卷积满足交换律,结合律。如:
f ( x ) ∗ g ( x ) = g ( x ) ∗ h ( x ) , f ( x ) ∗ g ( x ) ∗ h ( x ) = f ( x ) ∗ ( g ( x ) ∗ h ( x ) ) f(x)*g(x)=g(x)*h(x),f(x)*g(x)*h(x)=f(x)*(g(x)*h(x)) f(x)g(x)=g(x)h(x),f(x)g(x)h(x)=f(x)(g(x)h(x))

性质1

f ( x ) = ∑ d ∣ x g ( d ) × h ( x / d ) f(x)=\sum_{d|x}g(d)\times h(x/d) f(x)=dxg(d)×h(x/d) g , h 均 为 积 性 函 数 , 则 f 也 是 积 性 函 数 。 g,h均为积性函数,则f也是积性函数。 g,hf(我的天啊!)
下面给出证明:
设 f ( x ) = ∑ d ∣ x g ( d ) × h ( x / d ) , 有 两 个 互 质 的 正 整 数 n , m 。 设f(x)=\sum_{d|x}g(d)\times h(x/d),有两个互质的正整数n,m。 f(x)=dxg(d)×h(x/d)n,m
则 我 们 的 目 标 是 证 明 f ( n m ) = f ( n ) × f ( m ) 则我们的目标是证明f(nm)=f(n)\times f(m) f(nm)=f(n)×f(m)
我们尝试一下从结论出发,
f ( n m ) = f ( n ) × f ( m ) f(nm)=f(n) \times f(m) f(nm)=f(n)×f(m)

∑ a b ∣ n m g ( a b ) × h ( n m / a b ) = (    ∑ a ∣ n g ( a ) × h ( n / a )    ) × (    ∑ b ∣ m g ( b ) × h ( m / b )   ) \sum_{ab|nm}g(ab) \times h(nm/ab)=(~~\sum_{a|n}g(a) \times h(n/a)~~ )\times( ~~ \sum_{b|m}g(b) \times h(m/b) ~) abnmg(ab)×h(nm/ab)=(  ang(a)×h(n/a)  )×(  bmg(b)×h(m/b) )

∑ a b ∣ n m g ( a ) × h ( n / a ) × g ( b ) × h ( m / b ) = (    ∑ a ∣ n g ( a ) × h ( n / a )    ) × (    ∑ b ∣ m g ( b ) × h ( m / b )   ) ( 积 性 函 数 的 性 质 得 到 ) \sum_{ab|nm}g(a) \times h(n/a) \times g(b) \times h(m/b)=(~~\sum_{a|n}g(a) \times h(n/a)~~ )\times( ~~ \sum_{b|m}g(b) \times h(m/b) ~)(积性函数的性质得到) abnmg(a)×h(n/a)×g(b)×h(m/b)=(  ang(a)×h(n/a)  )×(  bmg(b)×h(m/b) )(

因为a,b互质,所以二者互不相干。如果我们把a看作一个常量,那么等式左边可化为 ∑ a ∣ n g ( a ) × h ( n / a ) ×    ∑ b ∣ m g ( b ) × h ( m / b )   \sum_{a|n}g(a) \times h(n/a) \times ~~ \sum_{b|m}g(b) \times h(m/b) ~ ang(a)×h(n/a)×  bmg(b)×h(m/b) =
( ∑ a ∣ n g ( a ) × h ( n / a ) ) × (    ∑ b ∣ m g ( b ) × h ( m / b )   ) (\sum_{a|n}g(a) \times h(n/a) )\times ( ~~ \sum_{b|m}g(b) \times h(m/b) ~) (ang(a)×h(n/a))×(  bmg(b)×h(m/b) )
(感性理解即可)

我们的每一变换都是恒等变化,所以我们也可以由下推到上,也就证明了这个性质的正确性。

性质2

定义 i d ( n ) = n , i d k ( n ) = n k , i d 0 = 1 ( n ) = 1 , e ( n ) = [ n = 1 ] id(n)=n,id^k(n)=n^k,id^0=1(n)=1,e(n)=[n=1] id(n)=n,idk(n)=nk,id0=1(n)=1,e(n)=[n=1].

定义若 f ( n ) ∗ g ( n ) = E ( n ) f(n)*g(n)=E(n) f(n)g(n)=E(n),则 f , g f,g f,g互为逆.

则有:

  1. 1 ∗ φ = i d 1*\varphi=id 1φ=id
  2. μ ∗ i d = φ \mu *id =\varphi μid=φ
  3. i d k ( n ) 的 逆 为 t ( n ) = μ ( n ) n k id^k(n)的逆为t(n)=\mu(n) n^k idk(n)t(n)=μ(n)nk.(可证明1到2的正确性)
  4. 积性函数的逆也是积性函数.( f ( n ) ∗ g ( n ) = 1 ( n ) f(n)*g(n)=1(n) f(n)g(n)=1(n),已知 f f f,则 g ( n ) = 1 f ( 1 ) ( e ( n ) − ∑ d ≠ 1 f ( d ) ∗ g ( n d ) ( f 无 要 求 ) g(n)=\dfrac{1}{f(1)}(e(n)-\sum_{d\ne 1}f(d)*g(\dfrac{n}{d})(f无要求) g(n)=f(1)1(e(n)d=1f(d)g(dn)(f)=
    ( e ( n ) − ∑ d ≠ 1 f ( d ) ∗ g ( n d ) (e(n)-\sum_{d\ne 1}f(d)*g(\dfrac{n}{d}) (e(n)d=1f(d)g(dn)( f 为 积 性 函 数 时 f ( 1 ) = 1 f为积性函数时f(1)=1 ff(1)=1).

3.用途:

狄利克雷卷积可以用来证明莫比乌斯反演。( g = f ∗ 1 , 则 f = g ∗ μ g=f*1,则f=g*\mu g=f1,f=gμ).
除此以外,我们还可以利用狄利克雷卷积的强大性质来加快求和。

例题(POJ2480 Longge’s problem):

Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.
“Oh, I know, I know!” Longge shouts! But do you know? Please solve it.

i d ( x ) = x id(x)=x id(x)=x,
把 d 当 做 g c d ( i , n ) , 把d当做gcd(i,n), dgcd(i,n),
∑ i = 1 n g c d ( i , n ) = ∑ i = 1 n d × [ g c d ( i / d , n / d ) = = 1 ] = \sum_{i=1}^n gcd(i,n)=\sum_{i=1}^n d \times [gcd(i/d,n/d)==1]= i=1ngcd(i,n)=i=1nd×[gcd(i/d,n/d)==1]=
∑ d ∣ n d × ∑ i = 1 n / d [ g c d ( i , n / d ) = = 1 ] = ∑ d ∣ n d × φ ( n / d ) = i d ( n ) ∗ φ ( n ) \sum_{d|n} d\times \sum_{i=1}^{n/d} [gcd(i,n/d)==1]=\sum_{d|n} d\times \varphi(n/d)=id(n)* \varphi(n) dnd×i=1n/d[gcd(i,n/d)==1]=dnd×φ(n/d)=id(n)φ(n)
(狄利克雷卷积)
那么,我们可以直接质因数分解n,利用上面的性质求解。
下面有一个暴力,一个正解。

//vio
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef unsigned int ui;
typedef long long ll; 
int p[11],s[11],n;
ll ans;
void dfs(int k,int sum,int phi)//第k个质数,sum为约数d,phi为d的欧拉函数值。
{
	if(k>p[0])
	{
		ans+=n/sum*phi;
		return;
	}
	dfs(k+1,sum,phi);
	ll x=p[k];
	for(int i=1;i<=s[k];i++)//p[k]^i
	{
		dfs(k+1,sum*x,(ll)phi*(x/p[k])*(p[k]-1));
		x*=p[k];
	}
}
int main()
{
	while(~scanf("%d",&n))
	{
		p[0]=0;
		memset(s,0,sizeof(s));
		int x=n;
		for(ll i=2;i*i<=x;i++)
			if(x%i==0)
			{
				p[++p[0]]=i;
				do
				{
					x/=i;
					s[p[0]]++;
				}while(x%i==0);
			}
		if(x>1)p[++p[0]]=x,s[p[0]]=1;
		ans=0;
		dfs(1,1,1);
		printf("%lld\n",ans);
	}
	return 0;
}
 
//std
#include<cstdio>
using namespace std;
typedef long long ll;
ll ans;
int n,p,s;
int main()
{
	while(~scanf("%d",&n))
	{
		ans=1;
		for(ll i=2;i*i<=n;i++)
			if(n%i==0)
			{
				s=0;p=1;
				do
				{
					n/=i;
					p*=i;
					++s;
				}while(n%i==0);
				ans*=(ll)(s*(i-1)*p/i)+p;
			}
		if(n>1)ans*=(ll)(n-1)+n;
		printf("%lld\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Infinite_Jerry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值