1.狄利克雷卷积定义:
狄利克雷卷积是形如
f
(
x
)
=
g
(
x
)
∗
h
(
x
)
f(x)=g(x)*h(x)
f(x)=g(x)∗h(x)的式子(*是狄利克雷卷积符号,我也不知道手写叉乘行不行 ),它表示的含义为
f
(
x
)
=
∑
d
∣
x
g
(
d
)
×
h
(
x
/
d
)
f(x)=\sum_{d|x} g(d)\times h(x/d)
f(x)=∑d∣xg(d)×h(x/d).
2.性质:
狄利克雷卷积满足交换律,结合律。如:
f
(
x
)
∗
g
(
x
)
=
g
(
x
)
∗
h
(
x
)
,
f
(
x
)
∗
g
(
x
)
∗
h
(
x
)
=
f
(
x
)
∗
(
g
(
x
)
∗
h
(
x
)
)
f(x)*g(x)=g(x)*h(x),f(x)*g(x)*h(x)=f(x)*(g(x)*h(x))
f(x)∗g(x)=g(x)∗h(x),f(x)∗g(x)∗h(x)=f(x)∗(g(x)∗h(x))。
性质1
若
f
(
x
)
=
∑
d
∣
x
g
(
d
)
×
h
(
x
/
d
)
f(x)=\sum_{d|x}g(d)\times h(x/d)
f(x)=∑d∣xg(d)×h(x/d),
g
,
h
均
为
积
性
函
数
,
则
f
也
是
积
性
函
数
。
g,h均为积性函数,则f也是积性函数。
g,h均为积性函数,则f也是积性函数。(我的天啊!)
下面给出证明:
设
f
(
x
)
=
∑
d
∣
x
g
(
d
)
×
h
(
x
/
d
)
,
有
两
个
互
质
的
正
整
数
n
,
m
。
设f(x)=\sum_{d|x}g(d)\times h(x/d),有两个互质的正整数n,m。
设f(x)=∑d∣xg(d)×h(x/d),有两个互质的正整数n,m。
则
我
们
的
目
标
是
证
明
f
(
n
m
)
=
f
(
n
)
×
f
(
m
)
则我们的目标是证明f(nm)=f(n)\times f(m)
则我们的目标是证明f(nm)=f(n)×f(m)。
我们尝试一下从结论出发,
f
(
n
m
)
=
f
(
n
)
×
f
(
m
)
f(nm)=f(n) \times f(m)
f(nm)=f(n)×f(m)
∑ a b ∣ n m g ( a b ) × h ( n m / a b ) = ( ∑ a ∣ n g ( a ) × h ( n / a ) ) × ( ∑ b ∣ m g ( b ) × h ( m / b ) ) \sum_{ab|nm}g(ab) \times h(nm/ab)=(~~\sum_{a|n}g(a) \times h(n/a)~~ )\times( ~~ \sum_{b|m}g(b) \times h(m/b) ~) ∑ab∣nmg(ab)×h(nm/ab)=( ∑a∣ng(a)×h(n/a) )×( ∑b∣mg(b)×h(m/b) )
∑ a b ∣ n m g ( a ) × h ( n / a ) × g ( b ) × h ( m / b ) = ( ∑ a ∣ n g ( a ) × h ( n / a ) ) × ( ∑ b ∣ m g ( b ) × h ( m / b ) ) ( 积 性 函 数 的 性 质 得 到 ) \sum_{ab|nm}g(a) \times h(n/a) \times g(b) \times h(m/b)=(~~\sum_{a|n}g(a) \times h(n/a)~~ )\times( ~~ \sum_{b|m}g(b) \times h(m/b) ~)(积性函数的性质得到) ∑ab∣nmg(a)×h(n/a)×g(b)×h(m/b)=( ∑a∣ng(a)×h(n/a) )×( ∑b∣mg(b)×h(m/b) )(积性函数的性质得到)
因为a,b互质,所以二者互不相干。如果我们把a看作一个常量,那么等式左边可化为
∑
a
∣
n
g
(
a
)
×
h
(
n
/
a
)
×
∑
b
∣
m
g
(
b
)
×
h
(
m
/
b
)
\sum_{a|n}g(a) \times h(n/a) \times ~~ \sum_{b|m}g(b) \times h(m/b) ~
∑a∣ng(a)×h(n/a)× ∑b∣mg(b)×h(m/b) =
(
∑
a
∣
n
g
(
a
)
×
h
(
n
/
a
)
)
×
(
∑
b
∣
m
g
(
b
)
×
h
(
m
/
b
)
)
(\sum_{a|n}g(a) \times h(n/a) )\times ( ~~ \sum_{b|m}g(b) \times h(m/b) ~)
(∑a∣ng(a)×h(n/a))×( ∑b∣mg(b)×h(m/b) )。
(感性理解即可)
我们的每一变换都是恒等变化,所以我们也可以由下推到上,也就证明了这个性质的正确性。
性质2
定义 i d ( n ) = n , i d k ( n ) = n k , i d 0 = 1 ( n ) = 1 , e ( n ) = [ n = 1 ] id(n)=n,id^k(n)=n^k,id^0=1(n)=1,e(n)=[n=1] id(n)=n,idk(n)=nk,id0=1(n)=1,e(n)=[n=1].
定义若 f ( n ) ∗ g ( n ) = E ( n ) f(n)*g(n)=E(n) f(n)∗g(n)=E(n),则 f , g f,g f,g互为逆.
则有:
- 1 ∗ φ = i d 1*\varphi=id 1∗φ=id
- μ ∗ i d = φ \mu *id =\varphi μ∗id=φ
- i d k ( n ) 的 逆 为 t ( n ) = μ ( n ) n k id^k(n)的逆为t(n)=\mu(n) n^k idk(n)的逆为t(n)=μ(n)nk.(可证明1到2的正确性)
- 积性函数的逆也是积性函数.(
f
(
n
)
∗
g
(
n
)
=
1
(
n
)
f(n)*g(n)=1(n)
f(n)∗g(n)=1(n),已知
f
f
f,则
g
(
n
)
=
1
f
(
1
)
(
e
(
n
)
−
∑
d
≠
1
f
(
d
)
∗
g
(
n
d
)
(
f
无
要
求
)
g(n)=\dfrac{1}{f(1)}(e(n)-\sum_{d\ne 1}f(d)*g(\dfrac{n}{d})(f无要求)
g(n)=f(1)1(e(n)−∑d=1f(d)∗g(dn)(f无要求)=
( e ( n ) − ∑ d ≠ 1 f ( d ) ∗ g ( n d ) (e(n)-\sum_{d\ne 1}f(d)*g(\dfrac{n}{d}) (e(n)−∑d=1f(d)∗g(dn)( f 为 积 性 函 数 时 f ( 1 ) = 1 f为积性函数时f(1)=1 f为积性函数时f(1)=1).
3.用途:
狄利克雷卷积可以用来证明莫比乌斯反演。(
g
=
f
∗
1
,
则
f
=
g
∗
μ
g=f*1,则f=g*\mu
g=f∗1,则f=g∗μ).
除此以外,我们还可以利用狄利克雷卷积的强大性质来加快求和。
例题(POJ2480 Longge’s problem):
Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.
“Oh, I know, I know!” Longge shouts! But do you know? Please solve it.
设
i
d
(
x
)
=
x
id(x)=x
id(x)=x,
把
d
当
做
g
c
d
(
i
,
n
)
,
把d当做gcd(i,n),
把d当做gcd(i,n),
∑
i
=
1
n
g
c
d
(
i
,
n
)
=
∑
i
=
1
n
d
×
[
g
c
d
(
i
/
d
,
n
/
d
)
=
=
1
]
=
\sum_{i=1}^n gcd(i,n)=\sum_{i=1}^n d \times [gcd(i/d,n/d)==1]=
∑i=1ngcd(i,n)=∑i=1nd×[gcd(i/d,n/d)==1]=
∑
d
∣
n
d
×
∑
i
=
1
n
/
d
[
g
c
d
(
i
,
n
/
d
)
=
=
1
]
=
∑
d
∣
n
d
×
φ
(
n
/
d
)
=
i
d
(
n
)
∗
φ
(
n
)
\sum_{d|n} d\times \sum_{i=1}^{n/d} [gcd(i,n/d)==1]=\sum_{d|n} d\times \varphi(n/d)=id(n)* \varphi(n)
∑d∣nd×∑i=1n/d[gcd(i,n/d)==1]=∑d∣nd×φ(n/d)=id(n)∗φ(n)
(狄利克雷卷积)
那么,我们可以直接质因数分解n,利用上面的性质求解。
下面有一个暴力,一个正解。
//vio
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef unsigned int ui;
typedef long long ll;
int p[11],s[11],n;
ll ans;
void dfs(int k,int sum,int phi)//第k个质数,sum为约数d,phi为d的欧拉函数值。
{
if(k>p[0])
{
ans+=n/sum*phi;
return;
}
dfs(k+1,sum,phi);
ll x=p[k];
for(int i=1;i<=s[k];i++)//p[k]^i
{
dfs(k+1,sum*x,(ll)phi*(x/p[k])*(p[k]-1));
x*=p[k];
}
}
int main()
{
while(~scanf("%d",&n))
{
p[0]=0;
memset(s,0,sizeof(s));
int x=n;
for(ll i=2;i*i<=x;i++)
if(x%i==0)
{
p[++p[0]]=i;
do
{
x/=i;
s[p[0]]++;
}while(x%i==0);
}
if(x>1)p[++p[0]]=x,s[p[0]]=1;
ans=0;
dfs(1,1,1);
printf("%lld\n",ans);
}
return 0;
}
//std
#include<cstdio>
using namespace std;
typedef long long ll;
ll ans;
int n,p,s;
int main()
{
while(~scanf("%d",&n))
{
ans=1;
for(ll i=2;i*i<=n;i++)
if(n%i==0)
{
s=0;p=1;
do
{
n/=i;
p*=i;
++s;
}while(n%i==0);
ans*=(ll)(s*(i-1)*p/i)+p;
}
if(n>1)ans*=(ll)(n-1)+n;
printf("%lld\n",ans);
}
return 0;
}